Genome-wide SNP detection, validation, and development of an 8K SNP array for apple.

Publication Overview
TitleGenome-wide SNP detection, validation, and development of an 8K SNP array for apple
AuthorsChagné D, Crowhurst RN, Troggio M, Davey MW, Gilmore B, Lawley C, Vanderzande S, Hellens RP, Kumar S, Cestaro A, Velasco R, Main D, Rees JD, Iezzoni A, Mockler T, Wilhelm L, Van de Weg E, Gardiner SE, Bassil N, Peace C
TypeJournal Article
Journal NamePloS one
Volume7
Issue2
Year2012
Page(s)e31745
CitationChagné D, Crowhurst RN, Troggio M, Davey MW, Gilmore B, Lawley C, Vanderzande S, Hellens RP, Kumar S, Cestaro A, Velasco R, Main D, Rees JD, Iezzoni A, Mockler T, Wilhelm L, Van de Weg E, Gardiner SE, Bassil N, Peace C. Genome-wide SNP detection, validation, and development of an 8K SNP array for apple. PloS one. 2012; 7(2):e31745.

Abstract

As high-throughput genetic marker screening systems are essential for a range of genetics studies and plant breeding applications, the International RosBREED SNP Consortium (IRSC) has utilized the Illumina Infinium® II system to develop a medium- to high-throughput SNP screening tool for genome-wide evaluation of allelic variation in apple (Malus×domestica) breeding germplasm. For genome-wide SNP discovery, 27 apple cultivars were chosen to represent worldwide breeding germplasm and re-sequenced at low coverage with the Illumina Genome Analyzer II. Following alignment of these sequences to the whole genome sequence of 'Golden Delicious', SNPs were identified using SoapSNP. A total of 2,113,120 SNPs were detected, corresponding to one SNP to every 288 bp of the genome. The Illumina GoldenGate® assay was then used to validate a subset of 144 SNPs with a range of characteristics, using a set of 160 apple accessions. This validation assay enabled fine-tuning of the final subset of SNPs for the Illumina Infinium® II system. The set of stringent filtering criteria developed allowed choice of a set of SNPs that not only exhibited an even distribution across the apple genome and a range of minor allele frequencies to ensure utility across germplasm, but also were located in putative exonic regions to maximize genotyping success rate. A total of 7867 apple SNPs was established for the IRSC apple 8K SNP array v1, of which 5554 were polymorphic after evaluation in segregating families and a germplasm collection. This publicly available genomics resource will provide an unprecedented resolution of SNP haplotypes, which will enable marker-locus-trait association discovery, description of the genetic architecture of quantitative traits, investigation of genetic variation (neutral and functional), and genomic selection in apple.

Features
This publication contains information about 456 features:
Feature NameUniquenameType
RosBREEDSNP_SNP_GA_1539502_Lg15_00717_MAF40_1679106_exon1RosBREEDSNP_SNP_GA_1539502_Lg15_00717_MAF40_1679106_exon1genetic_marker
RosBREEDSNP_SNP_GA_16085104_Lg16_02783_MAF20_MDP0000704254_exon2RosBREEDSNP_SNP_GA_16085104_Lg16_02783_MAF20_MDP0000704254_exon2genetic_marker
RosBREEDSNP_SNP_GA_18178372_Lg8_02689_MAF30_14424_exon1RosBREEDSNP_SNP_GA_18178372_Lg8_02689_MAF30_14424_exon1genetic_marker
RosBREEDSNP_SNP_GA_18544856_Lg4_02277_MAF40_790526_exon1RosBREEDSNP_SNP_GA_18544856_Lg4_02277_MAF40_790526_exon1genetic_marker
RosBREEDSNP_SNP_GA_19768504_Lg9_02460_MAF20_MDP0000125339_exon1RosBREEDSNP_SNP_GA_19768504_Lg9_02460_MAF20_MDP0000125339_exon1genetic_marker
RosBREEDSNP_SNP_GA_20815691_Lg10_PG_MAF20_433322_exon1RosBREEDSNP_SNP_GA_20815691_Lg10_PG_MAF20_433322_exon1genetic_marker
RosBREEDSNP_SNP_GA_21589639_Lg9_02230_MAF10_257147_exon1RosBREEDSNP_SNP_GA_21589639_Lg9_02230_MAF10_257147_exon1genetic_marker
RosBREEDSNP_SNP_GA_21874355_Lg14_02366_MAF20_MDP0000278672_exon1RosBREEDSNP_SNP_GA_21874355_Lg14_02366_MAF20_MDP0000278672_exon1genetic_marker
RosBREEDSNP_SNP_GA_23178125_Lg17_02534_MAF50_MDP0000515341_exon1RosBREEDSNP_SNP_GA_23178125_Lg17_02534_MAF50_MDP0000515341_exon1genetic_marker
RosBREEDSNP_SNP_GA_23902093_Lg4_00681_MAF40_1663052_exon1RosBREEDSNP_SNP_GA_23902093_Lg4_00681_MAF40_1663052_exon1genetic_marker
RosBREEDSNP_SNP_GA_24254801_Lg4_00283_MAF20_1625979_exon2RosBREEDSNP_SNP_GA_24254801_Lg4_00283_MAF20_1625979_exon2genetic_marker
RosBREEDSNP_SNP_GA_24545181_Lg5_01304_MAF30_MDP0000610390_exon1RosBREEDSNP_SNP_GA_24545181_Lg5_01304_MAF30_MDP0000610390_exon1genetic_marker
RosBREEDSNP_SNP_GA_25289304_Lg17_32736_MAF20_32736_exon1RosBREEDSNP_SNP_GA_25289304_Lg17_32736_MAF20_32736_exon1genetic_marker
RosBREEDSNP_SNP_GA_26508753_Lg11_138333_MAF40_138333_exon1RosBREEDSNP_SNP_GA_26508753_Lg11_138333_MAF40_138333_exon1genetic_marker
RosBREEDSNP_SNP_GA_27534464_Lg14_00052_MAF30_1639446_exon2RosBREEDSNP_SNP_GA_27534464_Lg14_00052_MAF30_1639446_exon2genetic_marker
RosBREEDSNP_SNP_GA_27849559_Lg9_02482_MAF30_175649_exon1RosBREEDSNP_SNP_GA_27849559_Lg9_02482_MAF30_175649_exon1genetic_marker
RosBREEDSNP_SNP_GA_29018338_Lg10_01570_MAF40_1642636_exon2RosBREEDSNP_SNP_GA_29018338_Lg10_01570_MAF40_1642636_exon2genetic_marker
RosBREEDSNP_SNP_GA_29623528_Lg14_00171_MAF20_521140_exon5RosBREEDSNP_SNP_GA_29623528_Lg14_00171_MAF20_521140_exon5genetic_marker
RosBREEDSNP_SNP_GA_29688384_Lg12_00653_MAF20_511257_exon1RosBREEDSNP_SNP_GA_29688384_Lg12_00653_MAF20_511257_exon1genetic_marker
RosBREEDSNP_SNP_GA_30679125_Lg12_00714_MAF30_1620539_exon3RosBREEDSNP_SNP_GA_30679125_Lg12_00714_MAF30_1620539_exon3genetic_marker
RosBREEDSNP_SNP_GA_31453820_Lg2_166905_MAF20_166905_exon1RosBREEDSNP_SNP_GA_31453820_Lg2_166905_MAF20_166905_exon1genetic_marker
RosBREEDSNP_SNP_GA_34442034_Lg3_02030_MAF40_MDP0000149890_exon2RosBREEDSNP_SNP_GA_34442034_Lg3_02030_MAF40_MDP0000149890_exon2genetic_marker
RosBREEDSNP_SNP_GA_35942030_Lg11_RosCOS372_MAF20_MDP0000239728_exon2RosBREEDSNP_SNP_GA_35942030_Lg11_RosCOS372_MAF20_MDP0000239728_exon2genetic_marker
RosBREEDSNP_SNP_GA_3879835_Lg3_00124_MAF10_761908_exon1RosBREEDSNP_SNP_GA_3879835_Lg3_00124_MAF10_761908_exon1genetic_marker
RosBREEDSNP_SNP_GA_3915965_Lg15_01827_MAF40_MDP0000160060_exon1RosBREEDSNP_SNP_GA_3915965_Lg15_01827_MAF40_MDP0000160060_exon1genetic_marker

Pages