Diversity arrays technology (DArT) markers in apple for genetic linkage maps

Publication Overview
TitleDiversity arrays technology (DArT) markers in apple for genetic linkage maps
AuthorsSchouten HJ, van de Weg WE, Carling J, Khan SI, McKay SJ, van Kaauwen MPW, Wittenberg AHJ, Koehorst-van Putten HJJ, Noordijk Y, Gao Z, Rees DJG, Van Dyk MM, Jaccoud D, Considine MJ, Kilian A
TypeJournal Article
Journal NameMolecular breeding
Volume29
Year2012
Page(s)645–660
CitationSchouten HJ, van de Weg WE, Carling J, Khan SI, McKay SJ, van Kaauwen MPW, Wittenberg AHJ, Koehorst-van Putten HJJ, Noordijk Y, Gao Z, Rees DJG, Van Dyk MM, Jaccoud D, Considine MJ, Kilian A. Diversity arrays technology (DArT) markers in apple for genetic linkage maps. Molecular breeding 2012 29:645–660

Abstract

Diversity Arrays Technology (DArT) provides a high-throughput whole-genome genotyping platform for the detection and scoring of hundreds of polymorphic loci without any need for prior sequence information. The work presented here details the development and performance of a DArT genotyping array for apple. This is the first paper on DArT in horticultural trees. Genetic mapping of DArT markers in two mapping populations and their integration with other marker types showed that DArT is a powerful high-throughput method for obtaining accurate and reproducible marker data, despite the low cost per data point. This method appears to be suitable for aligning the genetic maps of different segregating populations. The standard complexity reduction method, based on the methylation-sensitive PstI restriction enzyme, resulted in a high frequency of markers, although there was 52–54% redundancy due to the repeated sampling of highly similar sequences. Sequencing of the marker clones showed that they are significantly enriched for low-copy, genic regions. The genome coverage using the standard method was 55–76%. For improved genome coverage, an alternative complexity reduction method was examined, which resulted in less redundancy and additional segregating markers. The DArT markers proved to be of high quality and were very suitable for genetic mapping at low cost for the apple, providing moderate genome coverage.
Features
This publication contains information about 1,091 features:
Feature NameUniquenameType
461279461279genetic_marker
461303461303genetic_marker
461310461310genetic_marker
461367461367genetic_marker
461385461385genetic_marker
461392461392genetic_marker
461423461423genetic_marker
461443461443genetic_marker
461499461499genetic_marker
461502461502genetic_marker
461508461508genetic_marker
461519461519genetic_marker
461548461548genetic_marker
461607461607genetic_marker
461612461612genetic_marker
461614461614genetic_marker
461634461634genetic_marker
461640461640genetic_marker
461663461663genetic_marker
461684461684genetic_marker
461686461686genetic_marker
461699461699genetic_marker
461737461737genetic_marker
461747461747genetic_marker
461749461749genetic_marker

Pages

Featuremaps
This publication contains information about 2 maps:
Map Name
Apple-PF-F1-2012
Apple-2000-2012-F1