Development and cross-species/genera transferability of microsatellite markers discovered using 454 genome sequencing in chokecherry (Prunus virginiana L.)

Publication Overview
TitleDevelopment and cross-species/genera transferability of microsatellite markers discovered using 454 genome sequencing in chokecherry (Prunus virginiana L.)
AuthorsWang H, Walla JA, Zhong S, Huang D, Dai W
TypeJournal Article
Journal NamePlant cell reports
Volume31
Issue11
Year2012
Page(s)2047-55
CitationWang H, Walla JA, Zhong S, Huang D, Dai W. Development and cross-species/genera transferability of microsatellite markers discovered using 454 genome sequencing in chokecherry (Prunus virginiana L.). Plant cell reports. 2012 Nov; 31(11):2047-55.

Abstract

Chokecherry (Prunus virginiana L.) (2n = 4x = 32) is a unique Prunus species for both genetics and disease-resistance research due to its tetraploid nature and X-disease resistance. However, no genetic and genomic information on chokecherry is available. A partial chokecherry genome was sequenced using Roche 454 sequencing technology. A total of 145,094 reads covering 4.8 Mbp of the chokecherry genome were generated and 15,113 contigs were assembled, of which 11,675 contigs were larger than 100 bp in size. A total of 481 SSR loci were identified from 234 (out of 11,675) contigs and 246 polymerase chain reaction (PCR) primer pairs were designed. Of 246 primers, 212 (86.2 %) effectively produced amplification from the genomic DNA of chokecherry. All 212 amplifiable chokecherry primers were used to amplify genomic DNA from 11 other rosaceous species (sour cherry, sweet cherry, black cherry, peach, apricot, plum, apple, crabapple, pear, juneberry, and raspberry). Thus, chokecherry SSR primers can be transferable across Prunus species and other rosaceous species. An average of 63.2 and 58.7 % of amplifiable chokecherry primers amplified DNA from cherry and other Prunus species, respectively, while 47.2 % of amplifiable chokecherry primers amplified DNA from other rosaceous species. Using random genome sequence data generated from next-generation sequencing technology to identify microsatellite loci appears to be rapid and cost-efficient, particularly for species with no sequence information available. Sequence information and confirmed transferability of the identified chokecherry SSRs among species will be valuable for genetic research in Prunus and other rosaceous species. Key message A total of 246 SSR primers were identified from chokecherry genome sequences. Of which, 212 were confirmed amplifiable both in chokecherry and other 11 other rosaceous species.

Features
This publication contains information about 216 features:
Feature NameUniquenameType
C5269C5269genetic_marker
C5515C5515genetic_marker
C5595-1C5595-1genetic_marker
C5595-2C5595-2genetic_marker
C5602C5602genetic_marker
C5678C5678genetic_marker
C5753C5753genetic_marker
C5900C5900genetic_marker
C5948-1C5948-1genetic_marker
C5948-2C5948-2genetic_marker
C6012C6012genetic_marker
C6099C6099genetic_marker
C6100C6100genetic_marker
C6293C6293genetic_marker
C6350C6350genetic_marker
C6363C6363genetic_marker
C6387C6387genetic_marker
C6394C6394genetic_marker
C6434C6434genetic_marker
C6669C6669genetic_marker
C6740C6740genetic_marker
C6797C6797genetic_marker
C6918C6918genetic_marker
C6957C6957genetic_marker
C7106C7106genetic_marker

Pages