The peach (Prunus persica L. Batsch) genome harbours 10 KNOX genes, which are differentially expressed in stem development, and the class 1 KNOPE1 regulates elongation and lignification during primary growth

Publication Overview
TitleThe peach (Prunus persica L. Batsch) genome harbours 10 KNOX genes, which are differentially expressed in stem development, and the class 1 KNOPE1 regulates elongation and lignification during primary growth
AuthorsTestone G, Condello E, Verde I, Nicolodi C, Caboni E, Dettori MT, Vendramin E, Bruno L, Bitonti MB, Mele G, Giannino D
TypeJournal Article
Journal NameJournal of experimental botany
Volume63
Issue15
Year2012
Page(s)5417-35
CitationTestone G, Condello E, Verde I, Nicolodi C, Caboni E, Dettori MT, Vendramin E, Bruno L, Bitonti MB, Mele G, Giannino D. The peach (Prunus persica L. Batsch) genome harbours 10 KNOX genes, which are differentially expressed in stem development, and the class 1 KNOPE1 regulates elongation and lignification during primary growth. Journal of experimental botany. 2012 Sep; 63(15):5417-35.

Abstract

The KNOTTED-like (KNOX) genes encode homeodomain transcription factors and regulate several processes of plant organ development. The peach (Prunus persica L. Batsch) genome was found to contain 10 KNOX members (KNOPE genes); six of them were experimentally located on the Prunus reference map and the class 1 KNOPE1 was found to link to a quantitative trait locus (QTL) for the internode length in the peach×Ferganensis population. All the KNOPE genes were differentially transcribed in the internodes of growing shoots; the KNOPE1 mRNA abundance decreased progressively from primary (elongation) to secondary growth (radial expansion). During primary growth, the KNOPE1 mRNA was localized in the cortex and in the procambium/metaphloem zones, whereas it was undetected in incipient phloem and xylem fibres. KNOPE1 overexpression in the Arabidopsis bp4 loss-of-function background (35S:KNOPE1/bp genotype) restored the rachis length, suggesting, together with the QTL association, a role for KNOPE1 in peach shoot elongation. Several lignin biosynthesis genes were up-regulated in the bp4 internodes but repressed in the 35S:KNOPE1/bp lines similarly to the wild type. Moreover, the lignin deposition pattern of the 35S:KNOPE1/bp and the wild-type internodes were the same. The KNOPE1 protein was found to recognize in vitro one of the typical KNOX DNA-binding sites that recurred in peach and Arabidopsis lignin genes. KNOPE1 expression was inversely correlated with that of lignin genes and lignin deposition along the peach shoot stems and was down-regulated in lignifying vascular tissues. These data strongly support that KNOPE1 prevents cell lignification by repressing lignin genes during peach stem primary growth.

Features
This publication contains information about 7 features:
Feature NameUniquenameType
KNOPE2KNOPE2genetic_marker
KNOPE1KNOPE1genetic_marker
KNOPE3KNOPE3genetic_marker
STM1likeSTM1likegenetic_marker
STM2likeSTM2likegenetic_marker
KNOPE6KNOPE6genetic_marker
KNOPE4KNOPE4genetic_marker