Development and Validation of a 20K Single Nucleotide Polymorphism (SNP) Whole Genome Genotyping Array for Apple (Malus × domestica Borkh)

Publication Overview
TitleDevelopment and Validation of a 20K Single Nucleotide Polymorphism (SNP) Whole Genome Genotyping Array for Apple (Malus × domestica Borkh)
AuthorsBianco L, Cestaro A, Sargent DJ, Banchi E, Derdak S, Di Guardo M, Salvi S, Jansen J, Viola R, Gut I, Laurens F, Chagné D, Velasco R, van de Weg E, Troggio M
TypeJournal Article
Journal NamePloS one
Volume9
Issue10
Year2014
Page(s)e110377
CitationBianco L, Cestaro A, Sargent DJ, Banchi E, Derdak S, Di Guardo M, Salvi S, Jansen J, Viola R, Gut I, Laurens F, Chagné D, Velasco R, van de Weg E, Troggio M. Development and Validation of a 20K Single Nucleotide Polymorphism (SNP) Whole Genome Genotyping Array for Apple (Malus × domestica Borkh). PloS one. 2014; 9(10):e110377.

Abstract

High-density SNP arrays for genome-wide assessment of allelic variation have made high resolution genetic characterization of crop germplasm feasible. A medium density array for apple, the IRSC 8K SNP array, has been successfully developed and used for screens of bi-parental populations. However, the number of robust and well-distributed markers contained on this array was not sufficient to perform genome-wide association analyses in wider germplasm sets, or Pedigree-Based Analysis at high precision, because of rapid decay of linkage disequilibrium. We describe the development of an Illumina Infinium array targeting 20K SNPs. The SNPs were predicted from re-sequencing data derived from the genomes of 13 Malus × domestica apple cultivars and one accession belonging to a crab apple species (M. micromalus). A pipeline for SNP selection was devised that avoided the pitfalls associated with the inclusion of paralogous sequence variants, supported the construction of robust multi-allelic SNP haploblocks and selected up to 11 entries within narrow genomic regions of ±5 kb, termed focal points (FPs). Broad genome coverage was attained by placing FPs at 1 cM intervals on a consensus genetic map, complementing them with FPs to enrich the ends of each of the chromosomes, and by bridging physical intervals greater than 400 Kbps. The selection also included ∼3.7K validated SNPs from the IRSC 8K array. The array has already been used in other studies where ∼15.8K SNP markers were mapped with an average of ∼6.8K SNPs per full-sib family. The newly developed array with its high density of polymorphic validated SNPs is expected to be of great utility for Pedigree-Based Analysis and Genomic Selection. It will also be a valuable tool to help dissect the genetic mechanisms controlling important fruit quality traits, and to aid the identification of marker-trait associations suitable for the application of Marker Assisted Selection in apple breeding programs.

Features
This publication contains information about 18,019 features:
Feature NameUniquenameType
RosBREEDSNP_SNP_TC_16666886_Lg10_01710_MAF50_1661320_exon2RosBREEDSNP_SNP_TC_16666886_Lg10_01710_MAF50_1661320_exon2genetic_marker
RosBREEDSNP_SNP_TC_31238010_Lg10_01908_MAF20_MDP0000222736_exon5RosBREEDSNP_SNP_TC_31238010_Lg10_01908_MAF20_MDP0000222736_exon5genetic_marker
RosBREEDSNP_SNP_TC_36560697_Lg10_01761_MAF10_1664399_exon1RosBREEDSNP_SNP_TC_36560697_Lg10_01761_MAF10_1664399_exon1genetic_marker
RosBREEDSNP_SNP_TC_8508757_Lg10_00260_MAF50_MDP0000289540_exon1RosBREEDSNP_SNP_TC_8508757_Lg10_00260_MAF50_MDP0000289540_exon1genetic_marker
RosBREEDSNP_SNP_TG_7167616_Lg10_02051_MAF40_1633843_exon1RosBREEDSNP_SNP_TG_7167616_Lg10_02051_MAF40_1633843_exon1genetic_marker
RosBREEDSNP_SNP_TG_8522809_Lg10_00260_MAF40_483111_exon1RosBREEDSNP_SNP_TG_8522809_Lg10_00260_MAF40_483111_exon1genetic_marker
RosBREEDSNP_SNP_CT_32402084_Lg10_RosCOS2362_MAF40_MDP0000383515_exon5RosBREEDSNP_SNP_CT_32402084_Lg10_RosCOS2362_MAF40_MDP0000383515_exon5genetic_marker
RosBREEDSNP_SNP_GA_32372997_Lg10_RosCOS2362_MAF20_1643940_exon1RosBREEDSNP_SNP_GA_32372997_Lg10_RosCOS2362_MAF20_1643940_exon1genetic_marker
RosBREEDSNP_SNP_GT_32395620_Lg10_RosCOS2362_MAF30_1644148_exon2RosBREEDSNP_SNP_GT_32395620_Lg10_RosCOS2362_MAF30_1644148_exon2genetic_marker
RosBREEDSNP_SNP_AG_36033314_Lg10_186429_MAF40_186429_exon1RosBREEDSNP_SNP_AG_36033314_Lg10_186429_MAF40_186429_exon1genetic_marker
RosBREEDSNP_SNP_AC_6496114_Lg11_00621_MAF40_MDP0000172291_exon7RosBREEDSNP_SNP_AC_6496114_Lg11_00621_MAF40_MDP0000172291_exon7genetic_marker
RosBREEDSNP_SNP_AG_8427560_Lg11_00185_MAF20_MDP0000185943_exon7RosBREEDSNP_SNP_AG_8427560_Lg11_00185_MAF20_MDP0000185943_exon7genetic_marker
RosBREEDSNP_SNP_CT_26099970_Lg11_01797_MAF40_MDP0000288746_exon1RosBREEDSNP_SNP_CT_26099970_Lg11_01797_MAF40_MDP0000288746_exon1genetic_marker
RosBREEDSNP_SNP_GA_6494081_Lg11_00621_MAF40_523091_exon1RosBREEDSNP_SNP_GA_6494081_Lg11_00621_MAF40_523091_exon1genetic_marker
RosBREEDSNP_SNP_GT_36946479_Lg11_RosCOS1511_MAF30_263380_exon1RosBREEDSNP_SNP_GT_36946479_Lg11_RosCOS1511_MAF30_263380_exon1genetic_marker
RosBREEDSNP_SNP_TC_36949843_Lg11_RosCOS1511_MAF40_848539_exon1RosBREEDSNP_SNP_TC_36949843_Lg11_RosCOS1511_MAF40_848539_exon1genetic_marker
RosBREEDSNP_SNP_TC_8440050_Lg11_00185_MAF40_MDP0000270811_exon10RosBREEDSNP_SNP_TC_8440050_Lg11_00185_MAF40_MDP0000270811_exon10genetic_marker
RosBREEDSNP_SNP_TC_8716987_Lg11_00735_MAF10_1618847_exon1RosBREEDSNP_SNP_TC_8716987_Lg11_00735_MAF10_1618847_exon1genetic_marker
RosBREEDSNP_SNP_TG_36938301_Lg11_RosCOS1511_MAF10_475601_exon1RosBREEDSNP_SNP_TG_36938301_Lg11_RosCOS1511_MAF10_475601_exon1genetic_marker
RosBREEDSNP_SNP_GA_6745304_Lg11_01788_MAF40_371930_exon1RosBREEDSNP_SNP_GA_6745304_Lg11_01788_MAF40_371930_exon1genetic_marker
RosBREEDSNP_SNP_TG_5944780_Lg11_MDP0000163230_MAF20_MDP0000163230_exon1RosBREEDSNP_SNP_TG_5944780_Lg11_MDP0000163230_MAF20_MDP0000163230_exon1genetic_marker
RosBREEDSNP_SNP_TG_12911499_Lg11_02465_MAF40_1639701_exon1RosBREEDSNP_SNP_TG_12911499_Lg11_02465_MAF40_1639701_exon1genetic_marker
GDsnp00212GDsnp00212genetic_marker
GDsnp00714GDsnp00714genetic_marker
GDsnp01690GDsnp01690genetic_marker

Pages