Development and validation of the Axiom(®) Apple480K SNP genotyping array

Publication Overview
TitleDevelopment and validation of the Axiom(®) Apple480K SNP genotyping array
AuthorsBianco L, Cestaro A, Linsmith G, Muranty H, Denance C, Théron A, Poncet C, Micheletti D, Kerschbamer E, Di Pierro EA, Larger S, Pindo M, van de Weg E, Davassi A, Laurens F, Velasco R, Durel CE, Troggio M
TypeJournal Article
Journal NameThe Plant journal : for cell and molecular biology
Year2016
CitationBianco L, Cestaro A, Linsmith G, Muranty H, Denance C, Théron A, Poncet C, Micheletti D, Kerschbamer E, Di Pierro EA, Larger S, Pindo M, van de Weg E, Davassi A, Laurens F, Velasco R, Durel CE, Troggio M. Development and validation of the Axiom(®) Apple480K SNP genotyping array. The Plant journal : for cell and molecular biology. 2016 Feb 26.

Abstract

Cultivated apple (Malus x domestica Borkh.) is one of the most important fruit crops in temperate regions, with great economic and cultural values. The apple genome is highly heterozygous and has undergone a recent duplication which, combined with a rapid LD decay, makes it difficult to perform genome-wide association (GWA) studies. Single nucleotide polymorphism arrays offer highly multiplexed assays at a relatively low cost per data point and can be a valid tool for the identification of the markers associated with traits of interest. Here, we describe the development and validation of a 487K SNP Affymetrix Axiom(®) genotyping array for apple and discuss its potential applications. The array has been built from the high-depth resequencing of 63 different cultivars covering most of the genetic diversity in cultivated apple. SNPs have been chosen by applying a focal points approach to enrich genic regions, but also to reach a uniform coverage of non-genic regions. A total of 1,324 apple accessions, including the 92 progenies of two mapping populations, have been genotyped with the Axiom(®) Apple480K to assess the effectiveness of the array. A large majority of SNPs (359,994; 74%) fell in the stringent class of Poly High Resolution polymorphisms. We also devised a filtering procedure to identify a subset of 275K very robust markers that can be safely used for germplasm surveys in apple. The Axiom(®) Apple480K has now been commercially released both for public and proprietary use and will likely be a reference tool for GWA studies in apple. This article is protected by copyright. All rights reserved.

Features
This publication contains information about 487,249 features:
Feature NameUniquenameType
RosBREEDSNP_SNP_AC_1301926_Lg16_01600_MAF50_1683802_exon2RosBREEDSNP_SNP_AC_1301926_Lg16_01600_MAF50_1683802_exon2genetic_marker
RosBREEDSNP_SNP_AC_14288481_Lg8_RosCOS761_MAF30_366358_exon2RosBREEDSNP_SNP_AC_14288481_Lg8_RosCOS761_MAF30_366358_exon2genetic_marker
RosBREEDSNP_SNP_AC_1452699_Lg16_MDP0000303483_MAF50_MDP0000303483_exon2RosBREEDSNP_SNP_AC_1452699_Lg16_MDP0000303483_MAF50_MDP0000303483_exon2genetic_marker
RosBREEDSNP_SNP_AC_14769213_Lg10_254375_MAF20_254375_exon1RosBREEDSNP_SNP_AC_14769213_Lg10_254375_MAF20_254375_exon1genetic_marker
RosBREEDSNP_SNP_AC_17894779_Lg10_02252_MAF50_1673029_exon1RosBREEDSNP_SNP_AC_17894779_Lg10_02252_MAF50_1673029_exon1genetic_marker
RosBREEDSNP_SNP_AC_21367438_Lg5_RosCOS644_MAF10_1651746_exon1RosBREEDSNP_SNP_AC_21367438_Lg5_RosCOS644_MAF10_1651746_exon1genetic_marker
RosBREEDSNP_SNP_AC_21727754_Lg6_00142_MAF20_1627841_exon4RosBREEDSNP_SNP_AC_21727754_Lg6_00142_MAF20_1627841_exon4genetic_marker
RosBREEDSNP_SNP_AC_2429897_Lg5_00179_MAF40_1681882_exon1RosBREEDSNP_SNP_AC_2429897_Lg5_00179_MAF40_1681882_exon1genetic_marker
RosBREEDSNP_SNP_AC_26970454_Lg5_02729_MAF30_1664955_exon1RosBREEDSNP_SNP_AC_26970454_Lg5_02729_MAF30_1664955_exon1genetic_marker
RosBREEDSNP_SNP_AC_31057207_Lg13_01316_MAF20_883561_exon1RosBREEDSNP_SNP_AC_31057207_Lg13_01316_MAF20_883561_exon1genetic_marker
RosBREEDSNP_SNP_AC_32163753_Lg12_00762_MAF10_736021_exon1RosBREEDSNP_SNP_AC_32163753_Lg12_00762_MAF10_736021_exon1genetic_marker
RosBREEDSNP_SNP_AC_32329275_Lg9_00659_MAF20_178008_exon1RosBREEDSNP_SNP_AC_32329275_Lg9_00659_MAF20_178008_exon1genetic_marker
RosBREEDSNP_SNP_AC_32854243_Lg2_MDP0000185319_MAF20_MDP0000185319_exon1RosBREEDSNP_SNP_AC_32854243_Lg2_MDP0000185319_MAF20_MDP0000185319_exon1genetic_marker
RosBREEDSNP_SNP_AC_33262034_Lg2_00629_MAF30_532453_exon1RosBREEDSNP_SNP_AC_33262034_Lg2_00629_MAF30_532453_exon1genetic_marker
RosBREEDSNP_SNP_AC_34809522_Lg12_01874_MAF30_355036_exon2RosBREEDSNP_SNP_AC_34809522_Lg12_01874_MAF30_355036_exon2genetic_marker
RosBREEDSNP_SNP_AC_5662695_Lg13_RosCOS1918_MAF50_MDP0000150079_exon1RosBREEDSNP_SNP_AC_5662695_Lg13_RosCOS1918_MAF50_MDP0000150079_exon1genetic_marker
RosBREEDSNP_SNP_AC_6637190_Lg15_MDP0000156137_MAF30_MDP0000156137_exon1RosBREEDSNP_SNP_AC_6637190_Lg15_MDP0000156137_MAF30_MDP0000156137_exon1genetic_marker
RosBREEDSNP_SNP_AC_693011_Lg3_RosCOS2149_MAF50_30133_exon2RosBREEDSNP_SNP_AC_693011_Lg3_RosCOS2149_MAF50_30133_exon2genetic_marker
RosBREEDSNP_SNP_AG_10379422_Lg17_01044_MAF10_337422_exon1RosBREEDSNP_SNP_AG_10379422_Lg17_01044_MAF10_337422_exon1genetic_marker
RosBREEDSNP_SNP_AG_10948075_Lg6_RosCOS463_MAF20_MDP0000124776_exon2RosBREEDSNP_SNP_AG_10948075_Lg6_RosCOS463_MAF20_MDP0000124776_exon2genetic_marker
RosBREEDSNP_SNP_AG_11463412_Lg1_01815_MAF10_1651751_exon2RosBREEDSNP_SNP_AG_11463412_Lg1_01815_MAF10_1651751_exon2genetic_marker
RosBREEDSNP_SNP_AG_11718356_Lg7_155896__155896_exon1RosBREEDSNP_SNP_AG_11718356_Lg7_155896__155896_exon1genetic_marker
RosBREEDSNP_SNP_AG_1241012_Lg2_01134_MAF30_215646_exon1RosBREEDSNP_SNP_AG_1241012_Lg2_01134_MAF30_215646_exon1genetic_marker
RosBREEDSNP_SNP_AG_1266965_Lg6_02169_MAF20_461300_exon1RosBREEDSNP_SNP_AG_1266965_Lg6_02169_MAF20_461300_exon1genetic_marker
RosBREEDSNP_SNP_AG_13051936_Lg13_01704_MAF20_726138_exon1RosBREEDSNP_SNP_AG_13051936_Lg13_01704_MAF20_726138_exon1genetic_marker

Pages