Development and validation of the Axiom(®) Apple480K SNP genotyping array

Publication Overview
TitleDevelopment and validation of the Axiom(®) Apple480K SNP genotyping array
AuthorsBianco L, Cestaro A, Linsmith G, Muranty H, Denance C, Théron A, Poncet C, Micheletti D, Kerschbamer E, Di Pierro EA, Larger S, Pindo M, van de Weg E, Davassi A, Laurens F, Velasco R, Durel CE, Troggio M
TypeJournal Article
Journal NameThe Plant journal : for cell and molecular biology
Year2016
CitationBianco L, Cestaro A, Linsmith G, Muranty H, Denance C, Théron A, Poncet C, Micheletti D, Kerschbamer E, Di Pierro EA, Larger S, Pindo M, van de Weg E, Davassi A, Laurens F, Velasco R, Durel CE, Troggio M. Development and validation of the Axiom(®) Apple480K SNP genotyping array. The Plant journal : for cell and molecular biology. 2016 Feb 26.

Abstract

Cultivated apple (Malus x domestica Borkh.) is one of the most important fruit crops in temperate regions, with great economic and cultural values. The apple genome is highly heterozygous and has undergone a recent duplication which, combined with a rapid LD decay, makes it difficult to perform genome-wide association (GWA) studies. Single nucleotide polymorphism arrays offer highly multiplexed assays at a relatively low cost per data point and can be a valid tool for the identification of the markers associated with traits of interest. Here, we describe the development and validation of a 487K SNP Affymetrix Axiom(®) genotyping array for apple and discuss its potential applications. The array has been built from the high-depth resequencing of 63 different cultivars covering most of the genetic diversity in cultivated apple. SNPs have been chosen by applying a focal points approach to enrich genic regions, but also to reach a uniform coverage of non-genic regions. A total of 1,324 apple accessions, including the 92 progenies of two mapping populations, have been genotyped with the Axiom(®) Apple480K to assess the effectiveness of the array. A large majority of SNPs (359,994; 74%) fell in the stringent class of Poly High Resolution polymorphisms. We also devised a filtering procedure to identify a subset of 275K very robust markers that can be safely used for germplasm surveys in apple. The Axiom(®) Apple480K has now been commercially released both for public and proprietary use and will likely be a reference tool for GWA studies in apple. This article is protected by copyright. All rights reserved.

Features
This publication contains information about 487,249 features:
Feature NameUniquenameType
RosBREEDSNP_SNP_GA_1539502_Lg15_00717_MAF40_1679106_exon1RosBREEDSNP_SNP_GA_1539502_Lg15_00717_MAF40_1679106_exon1genetic_marker
RosBREEDSNP_SNP_GA_15507454_Lg16_01563_MAF20_308014_exon1RosBREEDSNP_SNP_GA_15507454_Lg16_01563_MAF20_308014_exon1genetic_marker
RosBREEDSNP_SNP_GA_16484227_Lg17_01438_MAF30_MDP0000136549_exon5RosBREEDSNP_SNP_GA_16484227_Lg17_01438_MAF30_MDP0000136549_exon5genetic_marker
RosBREEDSNP_SNP_GA_17583563_Lg15_RosCOS2945_MAF40_8165_exon1RosBREEDSNP_SNP_GA_17583563_Lg15_RosCOS2945_MAF40_8165_exon1genetic_marker
RosBREEDSNP_SNP_GA_18093819_Lg1_01783_MAF10_1653849_exon8RosBREEDSNP_SNP_GA_18093819_Lg1_01783_MAF10_1653849_exon8marker_locus
RosBREEDSNP_SNP_GA_18232690_Lg5_MDP0000193167_MAF30_MDP0000193167_exon10RosBREEDSNP_SNP_GA_18232690_Lg5_MDP0000193167_MAF30_MDP0000193167_exon10genetic_marker
RosBREEDSNP_SNP_GA_18291721_Lg13_01844_MAF20_1642843_exon1RosBREEDSNP_SNP_GA_18291721_Lg13_01844_MAF20_1642843_exon1genetic_marker
RosBREEDSNP_SNP_GA_18791535_Lg1_02731_MAF40_MDP0000186097_exon1RosBREEDSNP_SNP_GA_18791535_Lg1_02731_MAF40_MDP0000186097_exon1genetic_marker
RosBREEDSNP_SNP_GA_19699729_Lg5_00867_MAF40_1675010_exon4RosBREEDSNP_SNP_GA_19699729_Lg5_00867_MAF40_1675010_exon4genetic_marker
RosBREEDSNP_SNP_GA_2053599_Lg17_00290_MAF30_MDP0000848218_exon12RosBREEDSNP_SNP_GA_2053599_Lg17_00290_MAF30_MDP0000848218_exon12genetic_marker
RosBREEDSNP_SNP_GA_21133802_Lg4_01236_MAF20_MDP0000224911_exon1RosBREEDSNP_SNP_GA_21133802_Lg4_01236_MAF20_MDP0000224911_exon1genetic_marker
RosBREEDSNP_SNP_GA_21257957_Lg12_RosCOS1969_MAF40_MDP0000186861_exon3RosBREEDSNP_SNP_GA_21257957_Lg12_RosCOS1969_MAF40_MDP0000186861_exon3genetic_marker
RosBREEDSNP_SNP_GA_21365344_Lg5_RosCOS644_MAF20_MDP0000247776_exon2RosBREEDSNP_SNP_GA_21365344_Lg5_RosCOS644_MAF20_MDP0000247776_exon2genetic_marker
RosBREEDSNP_SNP_GA_2217552_Lg13_00098_MAF10_225571_exon1RosBREEDSNP_SNP_GA_2217552_Lg13_00098_MAF10_225571_exon1genetic_marker
RosBREEDSNP_SNP_GA_22533617_Lg8_01479_MAF20_MDP0000205444_exon4RosBREEDSNP_SNP_GA_22533617_Lg8_01479_MAF20_MDP0000205444_exon4genetic_marker
RosBREEDSNP_SNP_GA_23212514_Lg5_RosCOS1210_MAF40_1687970_exon6RosBREEDSNP_SNP_GA_23212514_Lg5_RosCOS1210_MAF40_1687970_exon6genetic_marker
RosBREEDSNP_SNP_GA_23439790_Lg14_02039_MAF10_253599_exon1RosBREEDSNP_SNP_GA_23439790_Lg14_02039_MAF10_253599_exon1genetic_marker
RosBREEDSNP_SNP_GA_2397565_Lg9_02134_MAF10_1638179_exon1RosBREEDSNP_SNP_GA_2397565_Lg9_02134_MAF10_1638179_exon1genetic_marker
RosBREEDSNP_SNP_GA_24140264_Lg4_00232_MAF30_378430_exon1RosBREEDSNP_SNP_GA_24140264_Lg4_00232_MAF30_378430_exon1genetic_marker
RosBREEDSNP_SNP_GA_25223845_Lg7_00699_MAF50_1660767_exon1RosBREEDSNP_SNP_GA_25223845_Lg7_00699_MAF50_1660767_exon1genetic_marker
RosBREEDSNP_SNP_GA_27335209_Lg2_02271_MAF30_490252_exon3RosBREEDSNP_SNP_GA_27335209_Lg2_02271_MAF30_490252_exon3genetic_marker
RosBREEDSNP_SNP_GA_28608657_Lg10_CONS61_MAF50_1668896_exon7RosBREEDSNP_SNP_GA_28608657_Lg10_CONS61_MAF50_1668896_exon7genetic_marker
RosBREEDSNP_SNP_GA_28845868_Lg6_01574_MAF20_MDP0000238670_exon6RosBREEDSNP_SNP_GA_28845868_Lg6_01574_MAF20_MDP0000238670_exon6genetic_marker
RosBREEDSNP_SNP_GA_29128835_Lg1_10005_MAF10_326880_exon1RosBREEDSNP_SNP_GA_29128835_Lg1_10005_MAF10_326880_exon1genetic_marker
RosBREEDSNP_SNP_GA_29619098_Lg14_00171_MAF30_1677423_exon1RosBREEDSNP_SNP_GA_29619098_Lg14_00171_MAF30_1677423_exon1genetic_marker

Pages