Development and validation of the Axiom(®) Apple480K SNP genotyping array

Publication Overview
TitleDevelopment and validation of the Axiom(®) Apple480K SNP genotyping array
AuthorsBianco L, Cestaro A, Linsmith G, Muranty H, Denance C, Théron A, Poncet C, Micheletti D, Kerschbamer E, Di Pierro EA, Larger S, Pindo M, van de Weg E, Davassi A, Laurens F, Velasco R, Durel CE, Troggio M
TypeJournal Article
Journal NameThe Plant journal : for cell and molecular biology
Year2016
CitationBianco L, Cestaro A, Linsmith G, Muranty H, Denance C, Théron A, Poncet C, Micheletti D, Kerschbamer E, Di Pierro EA, Larger S, Pindo M, van de Weg E, Davassi A, Laurens F, Velasco R, Durel CE, Troggio M. Development and validation of the Axiom(®) Apple480K SNP genotyping array. The Plant journal : for cell and molecular biology. 2016 Feb 26.

Abstract

Cultivated apple (Malus x domestica Borkh.) is one of the most important fruit crops in temperate regions, with great economic and cultural values. The apple genome is highly heterozygous and has undergone a recent duplication which, combined with a rapid LD decay, makes it difficult to perform genome-wide association (GWA) studies. Single nucleotide polymorphism arrays offer highly multiplexed assays at a relatively low cost per data point and can be a valid tool for the identification of the markers associated with traits of interest. Here, we describe the development and validation of a 487K SNP Affymetrix Axiom(®) genotyping array for apple and discuss its potential applications. The array has been built from the high-depth resequencing of 63 different cultivars covering most of the genetic diversity in cultivated apple. SNPs have been chosen by applying a focal points approach to enrich genic regions, but also to reach a uniform coverage of non-genic regions. A total of 1,324 apple accessions, including the 92 progenies of two mapping populations, have been genotyped with the Axiom(®) Apple480K to assess the effectiveness of the array. A large majority of SNPs (359,994; 74%) fell in the stringent class of Poly High Resolution polymorphisms. We also devised a filtering procedure to identify a subset of 275K very robust markers that can be safely used for germplasm surveys in apple. The Axiom(®) Apple480K has now been commercially released both for public and proprietary use and will likely be a reference tool for GWA studies in apple. This article is protected by copyright. All rights reserved.

Features
This publication contains information about 487,249 features:
Feature NameUniquenameType
RosBREEDSNP_SNP_GT_5988456_Lg17_00515_MAF20_MDP0000134434_exon3RosBREEDSNP_SNP_GT_5988456_Lg17_00515_MAF20_MDP0000134434_exon3genetic_marker
RosBREEDSNP_SNP_GT_7892794_Lg6_01954_MAF50_MDP0000224423_exon4RosBREEDSNP_SNP_GT_7892794_Lg6_01954_MAF50_MDP0000224423_exon4genetic_marker
RosBREEDSNP_SNP_GT_8691674_Lg11_00735_MAF50_358879_exon1RosBREEDSNP_SNP_GT_8691674_Lg11_00735_MAF50_358879_exon1genetic_marker
RosBREEDSNP_SNP_GT_8694610_Lg11_00735_MAF30_1678736_exon1RosBREEDSNP_SNP_GT_8694610_Lg11_00735_MAF30_1678736_exon1genetic_marker
RosBREEDSNP_SNP_GT_8707503_Lg11_00735_MAF50_480163_exon1RosBREEDSNP_SNP_GT_8707503_Lg11_00735_MAF50_480163_exon1genetic_marker
RosBREEDSNP_SNP_GT_875526_Lg13_02018_MAF50_903475_exon1RosBREEDSNP_SNP_GT_875526_Lg13_02018_MAF50_903475_exon1genetic_marker
RosBREEDSNP_SNP_GT_8898659_Lg8_01614_MAF40_9871_exon1RosBREEDSNP_SNP_GT_8898659_Lg8_01614_MAF40_9871_exon1genetic_marker
RosBREEDSNP_SNP_TC_10293726_Lg5_01651_MAF30_1668032_exon1RosBREEDSNP_SNP_TC_10293726_Lg5_01651_MAF30_1668032_exon1genetic_marker
RosBREEDSNP_SNP_TC_11018166_Lg7_01882_MAF20_1660002_exon2RosBREEDSNP_SNP_TC_11018166_Lg7_01882_MAF20_1660002_exon2genetic_marker
RosBREEDSNP_SNP_TC_1112866_Lg13_00279_MAF50_1688389_exon1RosBREEDSNP_SNP_TC_1112866_Lg13_00279_MAF50_1688389_exon1genetic_marker
RosBREEDSNP_SNP_TC_12111151_Lg13_RosCOS3331_MAF20_MDP0000312326_exon9RosBREEDSNP_SNP_TC_12111151_Lg13_RosCOS3331_MAF20_MDP0000312326_exon9genetic_marker
RosBREEDSNP_SNP_TC_12127305_Lg13_RosCOS3331_MAF40_1650208_exon1RosBREEDSNP_SNP_TC_12127305_Lg13_RosCOS3331_MAF40_1650208_exon1genetic_marker
RosBREEDSNP_SNP_TC_1219423_Lg2_00348_MAF20_1649423_exon1RosBREEDSNP_SNP_TC_1219423_Lg2_00348_MAF20_1649423_exon1genetic_marker
RosBREEDSNP_SNP_TC_1229074_Lg2_01134_MAF10_1625597_exon3RosBREEDSNP_SNP_TC_1229074_Lg2_01134_MAF10_1625597_exon3genetic_marker
RosBREEDSNP_SNP_TC_12362737_Lg16_01244_MAF40_MDP0000252150_exon5RosBREEDSNP_SNP_TC_12362737_Lg16_01244_MAF40_MDP0000252150_exon5genetic_marker
RosBREEDSNP_SNP_TC_12578927_Lg14_00170_MAF20_34257_exon1RosBREEDSNP_SNP_TC_12578927_Lg14_00170_MAF20_34257_exon1genetic_marker
RosBREEDSNP_SNP_TC_1282648_Lg10_RosCOS2296_MAF30_MDP0000226508_exon1RosBREEDSNP_SNP_TC_1282648_Lg10_RosCOS2296_MAF30_MDP0000226508_exon1genetic_marker
RosBREEDSNP_SNP_TC_1312317_Lg9_02013_MAF30_484528_exon1RosBREEDSNP_SNP_TC_1312317_Lg9_02013_MAF30_484528_exon1genetic_marker
RosBREEDSNP_SNP_TC_14241533_Lg9_00958_MAF30_1654980_exon3RosBREEDSNP_SNP_TC_14241533_Lg9_00958_MAF30_1654980_exon3genetic_marker
RosBREEDSNP_SNP_TC_14662823_Lg10_01267_MAF20_404068_exon1RosBREEDSNP_SNP_TC_14662823_Lg10_01267_MAF20_404068_exon1genetic_marker
RosBREEDSNP_SNP_TC_1543343_Lg15_00717_MAF20_1639580_exon2RosBREEDSNP_SNP_TC_1543343_Lg15_00717_MAF20_1639580_exon2genetic_marker
RosBREEDSNP_SNP_TC_15512541_Lg16_01563_MAF30_447792_exon1RosBREEDSNP_SNP_TC_15512541_Lg16_01563_MAF30_447792_exon1genetic_marker
RosBREEDSNP_SNP_TC_1571002_Lg16_01734_MAF40_216397_exon1RosBREEDSNP_SNP_TC_1571002_Lg16_01734_MAF40_216397_exon1genetic_marker
RosBREEDSNP_SNP_TC_15782830_Lg17_RosCOS2834_MAF40_MDP0000499284_exon1RosBREEDSNP_SNP_TC_15782830_Lg17_RosCOS2834_MAF40_MDP0000499284_exon1genetic_marker
RosBREEDSNP_SNP_TC_16168045_Lg4_00321_MAF20_344464_exon1RosBREEDSNP_SNP_TC_16168045_Lg4_00321_MAF20_344464_exon1genetic_marker

Pages