Development and validation of the Axiom(®) Apple480K SNP genotyping array

Publication Overview
TitleDevelopment and validation of the Axiom(®) Apple480K SNP genotyping array
AuthorsBianco L, Cestaro A, Linsmith G, Muranty H, Denance C, Théron A, Poncet C, Micheletti D, Kerschbamer E, Di Pierro EA, Larger S, Pindo M, van de Weg E, Davassi A, Laurens F, Velasco R, Durel CE, Troggio M
TypeJournal Article
Journal NameThe Plant journal : for cell and molecular biology
Year2016
CitationBianco L, Cestaro A, Linsmith G, Muranty H, Denance C, Théron A, Poncet C, Micheletti D, Kerschbamer E, Di Pierro EA, Larger S, Pindo M, van de Weg E, Davassi A, Laurens F, Velasco R, Durel CE, Troggio M. Development and validation of the Axiom(®) Apple480K SNP genotyping array. The Plant journal : for cell and molecular biology. 2016 Feb 26.

Abstract

Cultivated apple (Malus x domestica Borkh.) is one of the most important fruit crops in temperate regions, with great economic and cultural values. The apple genome is highly heterozygous and has undergone a recent duplication which, combined with a rapid LD decay, makes it difficult to perform genome-wide association (GWA) studies. Single nucleotide polymorphism arrays offer highly multiplexed assays at a relatively low cost per data point and can be a valid tool for the identification of the markers associated with traits of interest. Here, we describe the development and validation of a 487K SNP Affymetrix Axiom(®) genotyping array for apple and discuss its potential applications. The array has been built from the high-depth resequencing of 63 different cultivars covering most of the genetic diversity in cultivated apple. SNPs have been chosen by applying a focal points approach to enrich genic regions, but also to reach a uniform coverage of non-genic regions. A total of 1,324 apple accessions, including the 92 progenies of two mapping populations, have been genotyped with the Axiom(®) Apple480K to assess the effectiveness of the array. A large majority of SNPs (359,994; 74%) fell in the stringent class of Poly High Resolution polymorphisms. We also devised a filtering procedure to identify a subset of 275K very robust markers that can be safely used for germplasm surveys in apple. The Axiom(®) Apple480K has now been commercially released both for public and proprietary use and will likely be a reference tool for GWA studies in apple. This article is protected by copyright. All rights reserved.

Features
This publication contains information about 487,249 features:
Feature NameUniquenameType
RosBREEDSNP_SNP_TC_16191177_Lg4_00321_MAF50_MDP0000630319_exon2RosBREEDSNP_SNP_TC_16191177_Lg4_00321_MAF50_MDP0000630319_exon2genetic_marker
RosBREEDSNP_SNP_TC_16480309_Lg17_01438_MAF30_763197_exon2RosBREEDSNP_SNP_TC_16480309_Lg17_01438_MAF30_763197_exon2genetic_marker
RosBREEDSNP_SNP_TC_17912183_Lg1_00440_MAF40_1634418_exon1RosBREEDSNP_SNP_TC_17912183_Lg1_00440_MAF40_1634418_exon1genetic_marker
RosBREEDSNP_SNP_TC_18005035_Lg2_325713_MAF40_325713_exon1RosBREEDSNP_SNP_TC_18005035_Lg2_325713_MAF40_325713_exon1genetic_marker
RosBREEDSNP_SNP_TC_1879153_Lg2_01735_MAF30_MDP0000516949_exon1RosBREEDSNP_SNP_TC_1879153_Lg2_01735_MAF30_MDP0000516949_exon1genetic_marker
RosBREEDSNP_SNP_TC_19244913_Lg12_01555_MAF30_1625574_exon4RosBREEDSNP_SNP_TC_19244913_Lg12_01555_MAF30_1625574_exon4genetic_marker
RosBREEDSNP_SNP_TC_19428938_Lg2_217573_MAF30_217573_exon1RosBREEDSNP_SNP_TC_19428938_Lg2_217573_MAF30_217573_exon1genetic_marker
RosBREEDSNP_SNP_TC_19519947_Lg10_02183_MAF10_MDP0000235804_exon3RosBREEDSNP_SNP_TC_19519947_Lg10_02183_MAF10_MDP0000235804_exon3genetic_marker
RosBREEDSNP_SNP_TC_19621603_Lg8_00862_MAF50_MDP0000189560_exon1RosBREEDSNP_SNP_TC_19621603_Lg8_00862_MAF50_MDP0000189560_exon1genetic_marker
RosBREEDSNP_SNP_TC_19654685_Lg5_00867_MAF20_1623212_exon1RosBREEDSNP_SNP_TC_19654685_Lg5_00867_MAF20_1623212_exon1genetic_marker
RosBREEDSNP_SNP_TC_19730224_Lg4_01481_MAF30_MDP0000672345_exon1RosBREEDSNP_SNP_TC_19730224_Lg4_01481_MAF30_MDP0000672345_exon1genetic_marker
RosBREEDSNP_SNP_TC_20000116_Lg17_01298_MAF20_1626780_exon1RosBREEDSNP_SNP_TC_20000116_Lg17_01298_MAF20_1626780_exon1genetic_marker
RosBREEDSNP_SNP_TC_20181857_Lg13_00532_MAF40_1676552_exon1RosBREEDSNP_SNP_TC_20181857_Lg13_00532_MAF40_1676552_exon1genetic_marker
RosBREEDSNP_SNP_TC_21453078_Lg15_02313_MAF10_MDP0000217511_exon7RosBREEDSNP_SNP_TC_21453078_Lg15_02313_MAF10_MDP0000217511_exon7genetic_marker
RosBREEDSNP_SNP_TC_21775385_Lg17_RosCOS2078_MAF30_266423_exon1RosBREEDSNP_SNP_TC_21775385_Lg17_RosCOS2078_MAF30_266423_exon1genetic_marker
RosBREEDSNP_SNP_TC_226288_Lg14_01888_MAF20_1628548_exon1RosBREEDSNP_SNP_TC_226288_Lg14_01888_MAF20_1628548_exon1genetic_marker
RosBREEDSNP_SNP_TC_23391266_Lg12_RosCOS3647_MAF10_329736_exon1RosBREEDSNP_SNP_TC_23391266_Lg12_RosCOS3647_MAF10_329736_exon1genetic_marker
RosBREEDSNP_SNP_TC_23407280_Lg6_01556_MAF20_MDP0000306342_exon1RosBREEDSNP_SNP_TC_23407280_Lg6_01556_MAF20_MDP0000306342_exon1genetic_marker
RosBREEDSNP_SNP_TC_24102468_Lg3_01728_MAF40_1669728_exon1RosBREEDSNP_SNP_TC_24102468_Lg3_01728_MAF40_1669728_exon1genetic_marker
RosBREEDSNP_SNP_TC_24790175_Lg2_00833_MAF20_339998_exon1RosBREEDSNP_SNP_TC_24790175_Lg2_00833_MAF20_339998_exon1genetic_marker
RosBREEDSNP_SNP_TC_2484105_Lg10_01909_MAF50_1620158_exon4RosBREEDSNP_SNP_TC_2484105_Lg10_01909_MAF50_1620158_exon4genetic_marker
RosBREEDSNP_SNP_TC_2497711_Lg6_RosCOS777_MAF20_1623312_exon9RosBREEDSNP_SNP_TC_2497711_Lg6_RosCOS777_MAF20_1623312_exon9genetic_marker
RosBREEDSNP_SNP_TC_26287276_Lg1_00674_MAF10_1634016_exon7RosBREEDSNP_SNP_TC_26287276_Lg1_00674_MAF10_1634016_exon7genetic_marker
RosBREEDSNP_SNP_TC_26552010_Lg10_00971_MAF30_1679454_exon3RosBREEDSNP_SNP_TC_26552010_Lg10_00971_MAF30_1679454_exon3genetic_marker
RosBREEDSNP_SNP_TC_27353737_Lg7_MDP0000159463_MAF10_MDP0000159463_exon18RosBREEDSNP_SNP_TC_27353737_Lg7_MDP0000159463_MAF10_MDP0000159463_exon18genetic_marker

Pages