Development and validation of the Axiom(®) Apple480K SNP genotyping array

Publication Overview
TitleDevelopment and validation of the Axiom(®) Apple480K SNP genotyping array
AuthorsBianco L, Cestaro A, Linsmith G, Muranty H, Denance C, Théron A, Poncet C, Micheletti D, Kerschbamer E, Di Pierro EA, Larger S, Pindo M, van de Weg E, Davassi A, Laurens F, Velasco R, Durel CE, Troggio M
TypeJournal Article
Journal NameThe Plant journal : for cell and molecular biology
Year2016
CitationBianco L, Cestaro A, Linsmith G, Muranty H, Denance C, Théron A, Poncet C, Micheletti D, Kerschbamer E, Di Pierro EA, Larger S, Pindo M, van de Weg E, Davassi A, Laurens F, Velasco R, Durel CE, Troggio M. Development and validation of the Axiom(®) Apple480K SNP genotyping array. The Plant journal : for cell and molecular biology. 2016 Feb 26.

Abstract

Cultivated apple (Malus x domestica Borkh.) is one of the most important fruit crops in temperate regions, with great economic and cultural values. The apple genome is highly heterozygous and has undergone a recent duplication which, combined with a rapid LD decay, makes it difficult to perform genome-wide association (GWA) studies. Single nucleotide polymorphism arrays offer highly multiplexed assays at a relatively low cost per data point and can be a valid tool for the identification of the markers associated with traits of interest. Here, we describe the development and validation of a 487K SNP Affymetrix Axiom(®) genotyping array for apple and discuss its potential applications. The array has been built from the high-depth resequencing of 63 different cultivars covering most of the genetic diversity in cultivated apple. SNPs have been chosen by applying a focal points approach to enrich genic regions, but also to reach a uniform coverage of non-genic regions. A total of 1,324 apple accessions, including the 92 progenies of two mapping populations, have been genotyped with the Axiom(®) Apple480K to assess the effectiveness of the array. A large majority of SNPs (359,994; 74%) fell in the stringent class of Poly High Resolution polymorphisms. We also devised a filtering procedure to identify a subset of 275K very robust markers that can be safely used for germplasm surveys in apple. The Axiom(®) Apple480K has now been commercially released both for public and proprietary use and will likely be a reference tool for GWA studies in apple. This article is protected by copyright. All rights reserved.

Features
This publication contains information about 487,249 features:
Feature NameUniquenameType
RosBREEDSNP_SNP_TC_28643077_Lg6_151545_MAF20_151545_exon1RosBREEDSNP_SNP_TC_28643077_Lg6_151545_MAF20_151545_exon1genetic_marker
RosBREEDSNP_SNP_TC_29786847_Lg11_00662_MAF40_186556_exon1RosBREEDSNP_SNP_TC_29786847_Lg11_00662_MAF40_186556_exon1genetic_marker
RosBREEDSNP_SNP_TC_3010059_Lg9_00679_MAF20_1665403_exon1RosBREEDSNP_SNP_TC_3010059_Lg9_00679_MAF20_1665403_exon1genetic_marker
RosBREEDSNP_SNP_TC_312936_Lg17_01974_MAF20_216975_exon1RosBREEDSNP_SNP_TC_312936_Lg17_01974_MAF20_216975_exon1genetic_marker
RosBREEDSNP_SNP_TC_31584911_Lg12_00641_MAF10_548192_exon1RosBREEDSNP_SNP_TC_31584911_Lg12_00641_MAF10_548192_exon1genetic_marker
RosBREEDSNP_SNP_TC_31731992_Lg14_00213_MAF20_1648432_exon1RosBREEDSNP_SNP_TC_31731992_Lg14_00213_MAF20_1648432_exon1genetic_marker
RosBREEDSNP_SNP_TC_31889669_Lg14_MDP0000224810_MAF50_MDP0000224810_exon1RosBREEDSNP_SNP_TC_31889669_Lg14_MDP0000224810_MAF50_MDP0000224810_exon1genetic_marker
RosBREEDSNP_SNP_TC_31964859_Lg9_00452_MAF40_92351_exon1RosBREEDSNP_SNP_TC_31964859_Lg9_00452_MAF40_92351_exon1genetic_marker
RosBREEDSNP_SNP_TC_33103877_Lg14_00023_MAF40_MDP0000307655_exon4RosBREEDSNP_SNP_TC_33103877_Lg14_00023_MAF40_MDP0000307655_exon4genetic_marker
RosBREEDSNP_SNP_TC_3332541_Lg10_01947_MAF50_327449_exon1RosBREEDSNP_SNP_TC_3332541_Lg10_01947_MAF50_327449_exon1genetic_marker
RosBREEDSNP_SNP_TC_33385879_Lg12_02848_MAF50_MDP0000230470_exon3RosBREEDSNP_SNP_TC_33385879_Lg12_02848_MAF50_MDP0000230470_exon3genetic_marker
RosBREEDSNP_SNP_TC_3437104_Lg16_00353_MAF10_495480_exon1RosBREEDSNP_SNP_TC_3437104_Lg16_00353_MAF10_495480_exon1marker_locus
RosBREEDSNP_SNP_TC_34421998_Lg1_19307__19307_exon2RosBREEDSNP_SNP_TC_34421998_Lg1_19307__19307_exon2genetic_marker
RosBREEDSNP_SNP_TC_34439805_Lg1_02371_MAF40_MDP0000282186_exon3RosBREEDSNP_SNP_TC_34439805_Lg1_02371_MAF40_MDP0000282186_exon3genetic_marker
RosBREEDSNP_SNP_TC_350742_Lg17_01974_MAF10_225081_exon1RosBREEDSNP_SNP_TC_350742_Lg17_01974_MAF10_225081_exon1marker_locus
RosBREEDSNP_SNP_TC_3536435_Lg14_01767_MAF10_MDP0000674173_exon10RosBREEDSNP_SNP_TC_3536435_Lg14_01767_MAF10_MDP0000674173_exon10genetic_marker
RosBREEDSNP_SNP_TC_3598110_Lg14_01767_MAF20_1678273_exon2RosBREEDSNP_SNP_TC_3598110_Lg14_01767_MAF20_1678273_exon2genetic_marker
RosBREEDSNP_SNP_TC_36462247_Lg2_00669_MAF50_262678_exon2RosBREEDSNP_SNP_TC_36462247_Lg2_00669_MAF50_262678_exon2genetic_marker
RosBREEDSNP_SNP_TC_37031349_Lg10_00604_MAF50_165531_exon3RosBREEDSNP_SNP_TC_37031349_Lg10_00604_MAF50_165531_exon3genetic_marker
RosBREEDSNP_SNP_TC_37060927_Lg3_00664_MAF20_1663233_exon1RosBREEDSNP_SNP_TC_37060927_Lg3_00664_MAF20_1663233_exon1genetic_marker
RosBREEDSNP_SNP_TC_37545191_Lg3_01822_MAF30_263823_exon1RosBREEDSNP_SNP_TC_37545191_Lg3_01822_MAF30_263823_exon1genetic_marker
RosBREEDSNP_SNP_TC_3810235_Lg16_01186_MAF50_151207_exon1RosBREEDSNP_SNP_TC_3810235_Lg16_01186_MAF50_151207_exon1genetic_marker
RosBREEDSNP_SNP_TC_38702850_Lg11_01465_MAF40_469827_exon1RosBREEDSNP_SNP_TC_38702850_Lg11_01465_MAF40_469827_exon1genetic_marker
RosBREEDSNP_SNP_TC_3879648_Lg17_MDP0000196554_MAF20_MDP0000196554_exon2RosBREEDSNP_SNP_TC_3879648_Lg17_MDP0000196554_MAF20_MDP0000196554_exon2genetic_marker
RosBREEDSNP_SNP_TC_39014029_Lg2_00995_MAF50_MDP0000215541_exon1RosBREEDSNP_SNP_TC_39014029_Lg2_00995_MAF50_MDP0000215541_exon1genetic_marker

Pages