Genome Synteny Has Been Conserved Among the Octoploid Progenitors of Cultivated Strawberry Over Millions of Years of Evolution

Publication Overview
TitleGenome Synteny Has Been Conserved Among the Octoploid Progenitors of Cultivated Strawberry Over Millions of Years of Evolution
AuthorsHardigan Michael A., Feldmann Mitchell J., Lorant Anne, Bird Kevin A., Famula Randi, Acharya Charlotte, Cole Glenn, Edger Patrick P., Knapp Steven J.
TypeJournal Article
Journal NameFrontiers in Plant Science
Volume10
Year2020
Page(s)1789
CitationHardigan Michael A., Feldmann Mitchell J., Lorant Anne, Bird Kevin A., Famula Randi, Acharya Charlotte, Cole Glenn, Edger Patrick P., Knapp Steven J. Genome Synteny Has Been Conserved Among the Octoploid Progenitors of Cultivated Strawberry Over Millions of Years of Evolution. Front. Plant Sci., 2020 February 7; 10:1789 | https://doi.org/10.3389/fpls.2019.01789

Abstract

Allo-octoploid cultivated strawberry (Fragaria × ananassa) originated through a combination of polyploid and homoploid hybridization, domestication of an interspecific hybrid lineage, and continued admixture of wild species over the last 300 years. While genes appear to flow freely between the octoploid progenitors, the genome structures and diversity of the octoploid species remain poorly understood. The complexity and absence of an octoploid genome frustrated early efforts to study chromosome evolution, resolve subgenomic structure, and develop a single coherent linkage group nomenclature. Here, we show that octoploid Fragaria species harbor millions of subgenome-specific DNA variants. Their diversity was sufficient to distinguish duplicated (homoeologous and paralogous) DNA sequences and develop 50K and 850K SNP genotyping arrays populated with co-dominant, disomic SNP markers distributed throughout the octoploid genome. Whole-genome shotgun genotyping of an interspecific segregating population yielded 1.9M genetically mapped subgenome variants in 5,521 haploblocks spanning 3,394 cM in F. chiloensis subsp. lucida, and 1.6M genetically mapped subgenome variants in 3,179 haploblocks spanning 2,017 cM in F. × ananassa. These studies provide a dense genomic framework of subgenome-specific DNA markers for seamlessly cross-referencing genetic and physical mapping information and unifying existing chromosome nomenclatures. Using comparative genomics, we show that geographically diverse wild octoploids are effectively diploidized, nearly completely collinear, and retain strong macro-synteny with diploid progenitor species. The preservation of genome structure among allo-octoploid taxa is a critical factor in the unique history of garden strawberry, where unimpeded gene flow supported its origin and domestication through repeated cycles of interspecific hybridization.
Features
This publication contains information about 446,659 features:
Feature NameUniquenameType
AX-89879099AX-89879099genetic_marker
AX-89879165AX-89879165genetic_marker
AX-89879327AX-89879327genetic_marker
AX-89879597AX-89879597genetic_marker
AX-89879613AX-89879613genetic_marker
AX-89879779AX-89879779genetic_marker
AX-89880576AX-89880576genetic_marker
AX-89880729AX-89880729genetic_marker
AX-89880793AX-89880793genetic_marker
AX-89880927AX-89880927genetic_marker
AX-89881214AX-89881214genetic_marker
AX-89881718AX-89881718genetic_marker
AX-89881738AX-89881738genetic_marker
AX-89881755AX-89881755genetic_marker
AX-89882077AX-89882077genetic_marker
AX-89882151AX-89882151genetic_marker
AX-89882397AX-89882397genetic_marker
AX-89882402AX-89882402genetic_marker
AX-89882419AX-89882419genetic_marker
AX-89882731AX-89882731genetic_marker
AX-89882774AX-89882774genetic_marker
AX-89882911AX-89882911genetic_marker
AX-89883198AX-89883198genetic_marker
AX-89883227AX-89883227genetic_marker
AX-89883263AX-89883263genetic_marker

Pages

Libraries
This publication contains information about 2 libraries:
Library NameUnique NameOrganism
50K SNP array for cultivated strawberry50K SNP array for cultivated strawberryN/A N/A
850K SNP array for cultivated strawberry850K SNP array for cultivated strawberryN/A N/A