Impacts of light and temperature on shoot branching gradient and expression of strigolactone synthesis and signalling genes in rose

Publication Overview
TitleImpacts of light and temperature on shoot branching gradient and expression of strigolactone synthesis and signalling genes in rose
AuthorsDjennane S, Hibrand-Saint Oyant L, Kawamura K, Lalanne D, Laffaire M, Thouroude T, Chalain S, Sakr S, Boumaza R, Foucher F, Leduc N
TypeJournal Article
Journal NamePlant, cell & environment
Volume37
Issue3
Year2014
Page(s)742-57
CitationDjennane S, Hibrand-Saint Oyant L, Kawamura K, Lalanne D, Laffaire M, Thouroude T, Chalain S, Sakr S, Boumaza R, Foucher F, Leduc N. Impacts of light and temperature on shoot branching gradient and expression of strigolactone synthesis and signalling genes in rose. Plant, cell & environment. 2014 Mar; 37(3):742-57.

Abstract

Light and temperature are two environmental factors that deeply affect bud outgrowth. However, little is known about their impact on the bud burst gradient along a stem and their interactions with the molecular mechanisms of bud burst control. We investigated this question in two acrotonic rose cultivars. We demonstrated that the darkening of distal buds or exposure to cold (5 °C) prior to transfer to mild temperatures (20 °C) both repress acrotony, allowing the burst of quiescent medial and proximal buds. We sequenced the strigolactone pathway MAX-homologous genes in rose and studied their expression in buds and internodes along the stem. Only expressions of RwMAX1, RwMAX2 and RwMAX4 were detected. Darkening of the distal part of the shoot triggered a strong increase of RwMAX2 expression in darkened buds and bark-phloem samples, whereas it suppressed the acropetal gradient of the expression of RwMAX1 observed in stems fully exposed to light. Cold treatment induced an acropetal gradient of expression of RwMAX1 in internodes and of RwMAX2 in buds along the stem. Our results suggest that the bud burst gradient along the stem cannot be explained by a gradient of expression of RwMAX genes but rather by their local level of expression at each individual position.

Features
This publication contains information about 2 features:
Feature NameUniquenameType
RwMAX3RwMAX3genetic_marker
RwMAX2RwMAX2genetic_marker