'Bartlett' pear fruit (Pyrus communis L.) ripening regulation by low temperatures involves genes associated with jasmonic acid, cold response, and transcription factors

Publication Overview
Title'Bartlett' pear fruit (Pyrus communis L.) ripening regulation by low temperatures involves genes associated with jasmonic acid, cold response, and transcription factors
AuthorsNham NT, Macnish AJ, Zakharov F, Mitcham EJ
TypeJournal Article
Journal NamePlant science : an international journal of experimental plant biology
Volume260
Year2017
Page(s)8-18
CitationNham NT, Macnish AJ, Zakharov F, Mitcham EJ. 'Bartlett' pear fruit (Pyrus communis L.) ripening regulation by low temperatures involves genes associated with jasmonic acid, cold response, and transcription factors. Plant science : an international journal of experimental plant biology. 2017 Jul; 260:8-18.

Abstract

Low temperature (LT) treatments enhance ethylene production and ripening rate in the European pear (Pyrus communis L.). However, the underlying molecular mechanisms are not well understood. This study aims to identify genes responsible for ripening enhancement by LT. To this end, the transcriptome of 'Bartlett' pears treated with LT (0°C or 10°C for up to 14 d), which results in faster ripening, and control pears without conditioning treatment was analyzed. LT conditioned pears reached eating firmness (18N) in 6 d while control pears took about 12 d when left to ripen at 20°C. We identified 8,536 differentially expressed (DE) genes between the 0°C-treated and control fruit, and 7,938 DE genes between the 10°C-treated and control fruit. In an attempt to differentiate temperature-induced vs. ethylene-responsive pathways, we also monitored gene expression in fruit sequentially treated with 1-MCP then exposed to low temperature. This analysis revealed that genes associated with jasmonic acid biosynthesis and signaling, as well as the transcription factors TCP9a, TCP9b, CBF1, CBF4, AGL24, MYB1R1, and HsfB2b could be involved in the LT-mediated enhancement of ripening independently or upstream of ethylene.