Development and cross-species/genera transferability of microsatellite markers discovered using 454 genome sequencing in chokecherry (Prunus virginiana L.)

Publication Overview
TitleDevelopment and cross-species/genera transferability of microsatellite markers discovered using 454 genome sequencing in chokecherry (Prunus virginiana L.)
AuthorsWang H, Walla JA, Zhong S, Huang D, Dai W
TypeJournal Article
Journal NamePlant cell reports
Volume31
Issue11
Year2012
Page(s)2047-55
CitationWang H, Walla JA, Zhong S, Huang D, Dai W. Development and cross-species/genera transferability of microsatellite markers discovered using 454 genome sequencing in chokecherry (Prunus virginiana L.). Plant cell reports. 2012 Nov; 31(11):2047-55.

Abstract

Chokecherry (Prunus virginiana L.) (2n = 4x = 32) is a unique Prunus species for both genetics and disease-resistance research due to its tetraploid nature and X-disease resistance. However, no genetic and genomic information on chokecherry is available. A partial chokecherry genome was sequenced using Roche 454 sequencing technology. A total of 145,094 reads covering 4.8 Mbp of the chokecherry genome were generated and 15,113 contigs were assembled, of which 11,675 contigs were larger than 100 bp in size. A total of 481 SSR loci were identified from 234 (out of 11,675) contigs and 246 polymerase chain reaction (PCR) primer pairs were designed. Of 246 primers, 212 (86.2 %) effectively produced amplification from the genomic DNA of chokecherry. All 212 amplifiable chokecherry primers were used to amplify genomic DNA from 11 other rosaceous species (sour cherry, sweet cherry, black cherry, peach, apricot, plum, apple, crabapple, pear, juneberry, and raspberry). Thus, chokecherry SSR primers can be transferable across Prunus species and other rosaceous species. An average of 63.2 and 58.7 % of amplifiable chokecherry primers amplified DNA from cherry and other Prunus species, respectively, while 47.2 % of amplifiable chokecherry primers amplified DNA from other rosaceous species. Using random genome sequence data generated from next-generation sequencing technology to identify microsatellite loci appears to be rapid and cost-efficient, particularly for species with no sequence information available. Sequence information and confirmed transferability of the identified chokecherry SSRs among species will be valuable for genetic research in Prunus and other rosaceous species. Key message A total of 246 SSR primers were identified from chokecherry genome sequences. Of which, 212 were confirmed amplifiable both in chokecherry and other 11 other rosaceous species.

Features
This publication contains information about 216 features:
Feature NameUniquenameType
C10542C10542genetic_marker
C6156C6156genetic_marker
C6255C6255genetic_marker
C6256-1C6256-1genetic_marker
C6256-2C6256-2genetic_marker
C34C34genetic_marker
C162C162genetic_marker
C205C205genetic_marker
C324C324genetic_marker
C525C525genetic_marker
C629C629genetic_marker
C837C837genetic_marker
C1114C1114genetic_marker
C1181C1181genetic_marker
C1231C1231genetic_marker
C1322C1322genetic_marker
C1476C1476genetic_marker
C1585C1585genetic_marker
C1795C1795genetic_marker
C1882C1882genetic_marker
C2103C2103genetic_marker
C2109C2109genetic_marker
C2175C2175genetic_marker
C2194C2194genetic_marker
C2250C2250genetic_marker

Pages