Columnar apple primary roots share some features of the columnar-specific gene expression profile of aerial plant parts as evidenced by RNA-Seq analysis

Publication Overview
TitleColumnar apple primary roots share some features of the columnar-specific gene expression profile of aerial plant parts as evidenced by RNA-Seq analysis
AuthorsPetersen R, Djozgic H, Rieger B, Rapp S, Schmidt E
TypeJournal Article
Journal NameBMC plant biology
Volume15
Issue1
Year2015
Page(s)34
CitationPetersen R, Djozgic H, Rieger B, Rapp S, Schmidt E. Columnar apple primary roots share some features of the columnar-specific gene expression profile of aerial plant parts as evidenced by RNA-Seq analysis. BMC plant biology. 2015 Feb 4; 15(1):34.

Abstract

BackgroundPrimary roots (radicles) represent the first visible developmental stages of the plant and are crucial for nutrient supply and the integration of environmental signals. Few studies have analyzed primary roots at a molecular level, and were mostly limited to Arabidopsis. Here we study the primary root transcriptomes of standard type, heterozygous columnar and homozygous columnar apple (Malus x domestica) by RNA-Seq and quantitative real-time PCR. The columnar growth habit is characterized by a stunted main axis and the development of short fruit spurs instead of long lateral branches. This compact growth possesses economic potential because it allows high density planting and mechanical harvesting of the trees. Its molecular basis has been identified as a nested Gypsy-44 retrotransposon insertion; however the link between the insertion and the phenotype as well as the timing of the phenotype emergence are as yet unclear. We extend the transcriptomic studies of columnar tissues to the radicles, which are the earliest developmental stage and investigate whether homozygous columnar seedlings are viable.ResultsRadicles mainly express genes associated with primary metabolism, growth and development. About 200 genes show differential regulation in a comparison of heterozygous columnar radicles with non-columnar radicles, whereas the comparison of homozygous columnar radicles with non-columnar radicles yields about 300 differentially regulated genes. Genes involved in cellulose and phenylpropanoid biosynthesis, cell wall modification, transcription and translation, ethylene and jasmonate biosynthesis are upregulated in columnar radicles. Genes in the vicinity of the columnar-specific Gypsy-44 insertion experience an especially strong differential regulation: the direct downstream neighbor, dmr6-like, is downregulated in heterozygous columnar radicles, but strongly upregulated in columnar shoot apical meristems.ConclusionsThe transcriptomic profile of primary roots reflects their pivotal role in growth and development. Homozygous columnar embryos are viable and form normal radicles under natural conditions, and selection towards heterozygous plants most likely occurs due to breeders¿ preferences. Cell wall and phytohormone biosynthesis and metabolism experience differential regulation in columnar radicles. Presumably the first step of the differential regulation most likely happens within the region of the retrotransposon insertion and its tissue-specificity suggests involvement of one (or several) tissue-specific regulator(s).

Properties
Additional details for this publication include:
Property NameValue
eISSN1471-2229
Publication Date2015 Feb 4
Publication ModelPrint-Electronic
ISSN1471-2229
Journal AbbreviationBMC Plant Biol.
LanguageEnglish
Language AbbrENG
Publication TypeJournal Article
Cross References
This publication is also available in the following databases:
DatabaseAccession
PMID: PubMedPMID:25648715