Development and cross-species/genera transferability of microsatellite markers discovered using 454 genome sequencing in chokecherry (Prunus virginiana L.)

Publication Overview
TitleDevelopment and cross-species/genera transferability of microsatellite markers discovered using 454 genome sequencing in chokecherry (Prunus virginiana L.)
AuthorsWang H, Walla JA, Zhong S, Huang D, Dai W
TypeJournal Article
Journal NamePlant cell reports
Volume31
Issue11
Year2012
Page(s)2047-55
CitationWang H, Walla JA, Zhong S, Huang D, Dai W. Development and cross-species/genera transferability of microsatellite markers discovered using 454 genome sequencing in chokecherry (Prunus virginiana L.). Plant cell reports. 2012 Nov; 31(11):2047-55.

Abstract

Chokecherry (Prunus virginiana L.) (2n = 4x = 32) is a unique Prunus species for both genetics and disease-resistance research due to its tetraploid nature and X-disease resistance. However, no genetic and genomic information on chokecherry is available. A partial chokecherry genome was sequenced using Roche 454 sequencing technology. A total of 145,094 reads covering 4.8 Mbp of the chokecherry genome were generated and 15,113 contigs were assembled, of which 11,675 contigs were larger than 100 bp in size. A total of 481 SSR loci were identified from 234 (out of 11,675) contigs and 246 polymerase chain reaction (PCR) primer pairs were designed. Of 246 primers, 212 (86.2 %) effectively produced amplification from the genomic DNA of chokecherry. All 212 amplifiable chokecherry primers were used to amplify genomic DNA from 11 other rosaceous species (sour cherry, sweet cherry, black cherry, peach, apricot, plum, apple, crabapple, pear, juneberry, and raspberry). Thus, chokecherry SSR primers can be transferable across Prunus species and other rosaceous species. An average of 63.2 and 58.7 % of amplifiable chokecherry primers amplified DNA from cherry and other Prunus species, respectively, while 47.2 % of amplifiable chokecherry primers amplified DNA from other rosaceous species. Using random genome sequence data generated from next-generation sequencing technology to identify microsatellite loci appears to be rapid and cost-efficient, particularly for species with no sequence information available. Sequence information and confirmed transferability of the identified chokecherry SSRs among species will be valuable for genetic research in Prunus and other rosaceous species. Key message A total of 246 SSR primers were identified from chokecherry genome sequences. Of which, 212 were confirmed amplifiable both in chokecherry and other 11 other rosaceous species.

Features
This publication contains information about 216 features:
Feature NameUniquenameType
C10685C10685genetic_marker
C10694C10694genetic_marker
C10749-1C10749-1genetic_marker
C10749-2C10749-2genetic_marker
C11107C11107genetic_marker
C11139C11139genetic_marker
C11197C11197genetic_marker
C11252C11252genetic_marker
C11334C11334genetic_marker
C11353C11353genetic_marker
C11374C11374genetic_marker
C11377C11377genetic_marker
C11424C11424genetic_marker
C11508C11508genetic_marker
C11580C11580genetic_marker
C11610C11610genetic_marker
C11662C11662genetic_marker
C11815C11815genetic_marker
C11816C11816genetic_marker
C11819C11819genetic_marker
C11864C11864genetic_marker
C11961C11961genetic_marker
C11992C11992genetic_marker
C12096C12096genetic_marker
C12100C12100genetic_marker

Pages