Development and validation of the Axiom(®) Apple480K SNP genotyping array

Publication Overview
TitleDevelopment and validation of the Axiom(®) Apple480K SNP genotyping array
AuthorsBianco L, Cestaro A, Linsmith G, Muranty H, Denance C, Théron A, Poncet C, Micheletti D, Kerschbamer E, Di Pierro EA, Larger S, Pindo M, van de Weg E, Davassi A, Laurens F, Velasco R, Durel CE, Troggio M
TypeJournal Article
Journal NameThe Plant journal : for cell and molecular biology
Year2016
CitationBianco L, Cestaro A, Linsmith G, Muranty H, Denance C, Théron A, Poncet C, Micheletti D, Kerschbamer E, Di Pierro EA, Larger S, Pindo M, van de Weg E, Davassi A, Laurens F, Velasco R, Durel CE, Troggio M. Development and validation of the Axiom(®) Apple480K SNP genotyping array. The Plant journal : for cell and molecular biology. 2016 Feb 26.

Abstract

Cultivated apple (Malus x domestica Borkh.) is one of the most important fruit crops in temperate regions, with great economic and cultural values. The apple genome is highly heterozygous and has undergone a recent duplication which, combined with a rapid LD decay, makes it difficult to perform genome-wide association (GWA) studies. Single nucleotide polymorphism arrays offer highly multiplexed assays at a relatively low cost per data point and can be a valid tool for the identification of the markers associated with traits of interest. Here, we describe the development and validation of a 487K SNP Affymetrix Axiom(®) genotyping array for apple and discuss its potential applications. The array has been built from the high-depth resequencing of 63 different cultivars covering most of the genetic diversity in cultivated apple. SNPs have been chosen by applying a focal points approach to enrich genic regions, but also to reach a uniform coverage of non-genic regions. A total of 1,324 apple accessions, including the 92 progenies of two mapping populations, have been genotyped with the Axiom(®) Apple480K to assess the effectiveness of the array. A large majority of SNPs (359,994; 74%) fell in the stringent class of Poly High Resolution polymorphisms. We also devised a filtering procedure to identify a subset of 275K very robust markers that can be safely used for germplasm surveys in apple. The Axiom(®) Apple480K has now been commercially released both for public and proprietary use and will likely be a reference tool for GWA studies in apple. This article is protected by copyright. All rights reserved.

Features
This publication contains information about 487,249 features:
Feature NameUniquenameType
RosBREEDSNP_SNP_AG_13669196_Lg5_00978_MAF20_1680837_exon1RosBREEDSNP_SNP_AG_13669196_Lg5_00978_MAF20_1680837_exon1genetic_marker
RosBREEDSNP_SNP_AG_14529153_Lg1_RosCOS2921_MAF30_59140_exon1RosBREEDSNP_SNP_AG_14529153_Lg1_RosCOS2921_MAF30_59140_exon1genetic_marker
RosBREEDSNP_SNP_AG_14573434_Lg2_00987_MAF40_1674211_exon1RosBREEDSNP_SNP_AG_14573434_Lg2_00987_MAF40_1674211_exon1genetic_marker
RosBREEDSNP_SNP_AG_14599407_Lg2_00987_MAF40_375341_exon1RosBREEDSNP_SNP_AG_14599407_Lg2_00987_MAF40_375341_exon1genetic_marker
RosBREEDSNP_SNP_AG_1522334_Lg15_00717_MAF20_405207_exon1RosBREEDSNP_SNP_AG_1522334_Lg15_00717_MAF20_405207_exon1genetic_marker
RosBREEDSNP_SNP_AG_15369623_Lg3_02546_MAF40_1618444_exon2RosBREEDSNP_SNP_AG_15369623_Lg3_02546_MAF40_1618444_exon2genetic_marker
RosBREEDSNP_SNP_AG_16067316_Lg4_01777_MAF20_1627546_exon1RosBREEDSNP_SNP_AG_16067316_Lg4_01777_MAF20_1627546_exon1genetic_marker
RosBREEDSNP_SNP_AG_16726719_Lg10_01710_MAF40_1666563_exon2RosBREEDSNP_SNP_AG_16726719_Lg10_01710_MAF40_1666563_exon2genetic_marker
RosBREEDSNP_SNP_AG_16997826_Lg10_02009_MAF10_354265_exon1RosBREEDSNP_SNP_AG_16997826_Lg10_02009_MAF10_354265_exon1genetic_marker
RosBREEDSNP_SNP_AG_17040479_Lg10_02009_MAF20_487699_exon2RosBREEDSNP_SNP_AG_17040479_Lg10_02009_MAF20_487699_exon2genetic_marker
RosBREEDSNP_SNP_AG_18043587_Lg5_MDP0000580952_MAF20_MDP0000580952_exon7RosBREEDSNP_SNP_AG_18043587_Lg5_MDP0000580952_MAF20_MDP0000580952_exon7genetic_marker
RosBREEDSNP_SNP_AG_18785188_Lg2_02076_MAF10_MDP0000141906_exon1RosBREEDSNP_SNP_AG_18785188_Lg2_02076_MAF10_MDP0000141906_exon1genetic_marker
RosBREEDSNP_SNP_AG_19287810_Lg2_00934_MAF10_1630326_exon2RosBREEDSNP_SNP_AG_19287810_Lg2_00934_MAF10_1630326_exon2genetic_marker
RosBREEDSNP_SNP_AG_19557571_Lg2_01840_MAF30_1661441_exon2RosBREEDSNP_SNP_AG_19557571_Lg2_01840_MAF30_1661441_exon2genetic_marker
RosBREEDSNP_SNP_AG_19748645_Lg4_01481_MAF10_1675186_exon1RosBREEDSNP_SNP_AG_19748645_Lg4_01481_MAF10_1675186_exon1genetic_marker
RosBREEDSNP_SNP_AG_19972431_Lg9_02100_MAF10_211759_exon1RosBREEDSNP_SNP_AG_19972431_Lg9_02100_MAF10_211759_exon1genetic_marker
RosBREEDSNP_SNP_AG_21248954_Lg12_RosCOS1969_MAF20_1627732_exon7RosBREEDSNP_SNP_AG_21248954_Lg12_RosCOS1969_MAF20_1627732_exon7genetic_marker
RosBREEDSNP_SNP_AG_21456371_Lg4_01558_MAF10_1644005_exon2RosBREEDSNP_SNP_AG_21456371_Lg4_01558_MAF10_1644005_exon2genetic_marker
RosBREEDSNP_SNP_AG_21581072_Lg9_02230_MAF40_1686242_exon1RosBREEDSNP_SNP_AG_21581072_Lg9_02230_MAF40_1686242_exon1genetic_marker
RosBREEDSNP_SNP_AG_21614543_Lg9_02230_MAF30_MDP0000651477_exon1RosBREEDSNP_SNP_AG_21614543_Lg9_02230_MAF30_MDP0000651477_exon1genetic_marker
RosBREEDSNP_SNP_AG_21766016_Lg4_00160_MAF40_62939_exon1RosBREEDSNP_SNP_AG_21766016_Lg4_00160_MAF40_62939_exon1genetic_marker
RosBREEDSNP_SNP_AG_23523902_Lg15_00038_MAF10_524070_exon1RosBREEDSNP_SNP_AG_23523902_Lg15_00038_MAF10_524070_exon1genetic_marker
RosBREEDSNP_SNP_AG_24240346_Lg4_00283_MAF10_1676837_exon1RosBREEDSNP_SNP_AG_24240346_Lg4_00283_MAF10_1676837_exon1genetic_marker
RosBREEDSNP_SNP_AG_24246303_Lg4_00283_MAF10_1639561_exon1RosBREEDSNP_SNP_AG_24246303_Lg4_00283_MAF10_1639561_exon1genetic_marker
RosBREEDSNP_SNP_AG_24794643_Lg2_00833_MAF40_MDP0000282782_exon1RosBREEDSNP_SNP_AG_24794643_Lg2_00833_MAF40_MDP0000282782_exon1genetic_marker

Pages