Development and validation of the Axiom(®) Apple480K SNP genotyping array

Publication Overview
TitleDevelopment and validation of the Axiom(®) Apple480K SNP genotyping array
AuthorsBianco L, Cestaro A, Linsmith G, Muranty H, Denance C, Théron A, Poncet C, Micheletti D, Kerschbamer E, Di Pierro EA, Larger S, Pindo M, van de Weg E, Davassi A, Laurens F, Velasco R, Durel CE, Troggio M
TypeJournal Article
Journal NameThe Plant journal : for cell and molecular biology
Year2016
CitationBianco L, Cestaro A, Linsmith G, Muranty H, Denance C, Théron A, Poncet C, Micheletti D, Kerschbamer E, Di Pierro EA, Larger S, Pindo M, van de Weg E, Davassi A, Laurens F, Velasco R, Durel CE, Troggio M. Development and validation of the Axiom(®) Apple480K SNP genotyping array. The Plant journal : for cell and molecular biology. 2016 Feb 26.

Abstract

Cultivated apple (Malus x domestica Borkh.) is one of the most important fruit crops in temperate regions, with great economic and cultural values. The apple genome is highly heterozygous and has undergone a recent duplication which, combined with a rapid LD decay, makes it difficult to perform genome-wide association (GWA) studies. Single nucleotide polymorphism arrays offer highly multiplexed assays at a relatively low cost per data point and can be a valid tool for the identification of the markers associated with traits of interest. Here, we describe the development and validation of a 487K SNP Affymetrix Axiom(®) genotyping array for apple and discuss its potential applications. The array has been built from the high-depth resequencing of 63 different cultivars covering most of the genetic diversity in cultivated apple. SNPs have been chosen by applying a focal points approach to enrich genic regions, but also to reach a uniform coverage of non-genic regions. A total of 1,324 apple accessions, including the 92 progenies of two mapping populations, have been genotyped with the Axiom(®) Apple480K to assess the effectiveness of the array. A large majority of SNPs (359,994; 74%) fell in the stringent class of Poly High Resolution polymorphisms. We also devised a filtering procedure to identify a subset of 275K very robust markers that can be safely used for germplasm surveys in apple. The Axiom(®) Apple480K has now been commercially released both for public and proprietary use and will likely be a reference tool for GWA studies in apple. This article is protected by copyright. All rights reserved.

Features
This publication contains information about 487,249 features:
Feature NameUniquenameType
RosBREEDSNP_SNP_AG_25347258_Lg6_01444_MAF20_1679773_exon2RosBREEDSNP_SNP_AG_25347258_Lg6_01444_MAF20_1679773_exon2genetic_marker
RosBREEDSNP_SNP_AG_26020598_Lg11_01797_MAF20_218458_exon2RosBREEDSNP_SNP_AG_26020598_Lg11_01797_MAF20_218458_exon2genetic_marker
RosBREEDSNP_SNP_AG_27095198_Lg1_01693_MAF30_332314_exon1RosBREEDSNP_SNP_AG_27095198_Lg1_01693_MAF30_332314_exon1genetic_marker
RosBREEDSNP_SNP_AG_27462705_Lg6_RosCOS1040_MAF20_351957_exon1RosBREEDSNP_SNP_AG_27462705_Lg6_RosCOS1040_MAF20_351957_exon1genetic_marker
RosBREEDSNP_SNP_AG_29040874_Lg12_00334_MAF20_1639988_exon1RosBREEDSNP_SNP_AG_29040874_Lg12_00334_MAF20_1639988_exon1genetic_marker
RosBREEDSNP_SNP_AG_29098150_Lg12_00334_MAF10_1660126_exon1RosBREEDSNP_SNP_AG_29098150_Lg12_00334_MAF10_1660126_exon1genetic_marker
RosBREEDSNP_SNP_AG_29723749_Lg12_00653_MAF50_MDP0000270851_exon3RosBREEDSNP_SNP_AG_29723749_Lg12_00653_MAF50_MDP0000270851_exon3genetic_marker
RosBREEDSNP_SNP_AG_3153316_Lg17_01584_MAF40_1620853_exon1RosBREEDSNP_SNP_AG_3153316_Lg17_01584_MAF40_1620853_exon1genetic_marker
RosBREEDSNP_SNP_AG_32730568_Lg10_RosCOS3231_MAF50_492103_exon1RosBREEDSNP_SNP_AG_32730568_Lg10_RosCOS3231_MAF50_492103_exon1genetic_marker
RosBREEDSNP_SNP_AG_32737388_Lg3_01329_MAF20_359898_exon1RosBREEDSNP_SNP_AG_32737388_Lg3_01329_MAF20_359898_exon1genetic_marker
RosBREEDSNP_SNP_AG_33703347_Lg3_01014_MAF10_1641371_exon1RosBREEDSNP_SNP_AG_33703347_Lg3_01014_MAF10_1641371_exon1genetic_marker
RosBREEDSNP_SNP_AG_3463154_Lg2_01641_MAF30_MDP0000943030_exon1RosBREEDSNP_SNP_AG_3463154_Lg2_01641_MAF30_MDP0000943030_exon1genetic_marker
RosBREEDSNP_SNP_AG_34926642_Lg12_01647_MAF30_1639248_exon2RosBREEDSNP_SNP_AG_34926642_Lg12_01647_MAF30_1639248_exon2genetic_marker
RosBREEDSNP_SNP_AG_3529973_Lg17_02049_MAF10_MDP0000321089_exon5RosBREEDSNP_SNP_AG_3529973_Lg17_02049_MAF10_MDP0000321089_exon5genetic_marker
RosBREEDSNP_SNP_AG_35422934_Lg1_02092_MAF20_7047_exon1RosBREEDSNP_SNP_AG_35422934_Lg1_02092_MAF20_7047_exon1genetic_marker
RosBREEDSNP_SNP_AG_357921_Lg17_01974_MAF40_MDP0000156410_exon2RosBREEDSNP_SNP_AG_357921_Lg17_01974_MAF40_MDP0000156410_exon2genetic_marker
RosBREEDSNP_SNP_AG_36008454_Lg11_RosCOS372_MAF40_1686532_exon1RosBREEDSNP_SNP_AG_36008454_Lg11_RosCOS372_MAF40_1686532_exon1genetic_marker
RosBREEDSNP_SNP_AG_3601270_Lg14_01767_MAF50_1619222_exon11RosBREEDSNP_SNP_AG_3601270_Lg14_01767_MAF50_1619222_exon11genetic_marker
RosBREEDSNP_SNP_AG_37110581_Lg3_00664_MAF50_497449_exon2RosBREEDSNP_SNP_AG_37110581_Lg3_00664_MAF50_497449_exon2genetic_marker
RosBREEDSNP_SNP_AG_3790925_Lg9_00605_MAF20_MDP0000264662_exon16RosBREEDSNP_SNP_AG_3790925_Lg9_00605_MAF20_MDP0000264662_exon16genetic_marker
RosBREEDSNP_SNP_AG_3864649_Lg7_RosCOS418_MAF20_MDP0000281359_exon5RosBREEDSNP_SNP_AG_3864649_Lg7_RosCOS418_MAF20_MDP0000281359_exon5genetic_marker
RosBREEDSNP_SNP_AG_39576068_Lg2_00167_MAF10_775044_exon1RosBREEDSNP_SNP_AG_39576068_Lg2_00167_MAF10_775044_exon1genetic_marker
RosBREEDSNP_SNP_AG_4176344_Lg2_00203_MAF50_1638544_exon5RosBREEDSNP_SNP_AG_4176344_Lg2_00203_MAF50_1638544_exon5genetic_marker
RosBREEDSNP_SNP_AG_4782504_Lg6_263940__263940_exon2RosBREEDSNP_SNP_AG_4782504_Lg6_263940__263940_exon2genetic_marker
RosBREEDSNP_SNP_AG_5011588_Lg11_RosCOS2981_MAF10_143244_exon1RosBREEDSNP_SNP_AG_5011588_Lg11_RosCOS2981_MAF10_143244_exon1genetic_marker

Pages