Hinrichsen P. Construction of high density sweet cherry (Prunus avium L.) linkage maps using microsatellite markers and SNPs detected by genotyping-by-sequencing (GBS).

Publication Overview
TitleConstruction of high density sweet cherry (Prunus avium L.) linkage maps using microsatellite markers and SNPs detected by genotyping-by-sequencing (GBS).
AuthorsGuajardo V, Solís S, Sagredo B, Gainza F, Muñoz C, Gasic K, Hinrichsen P. Construction of high density sweet cherry (Prunus avium L.) linkage maps using microsatellite markers and SNPs detected by genotyping-by-sequencing (GBS). PLoS ONE 2015.
TypeJournal Article
Journal NamePLoS ONE
Volume10
Issue5
Year2015
Page(s)e0127750
CitationGuajardo V, Solís S, Sagredo B, Gainza F, Muñoz C, Gasic K, Hinrichsen P. Construction of high density sweet cherry (Prunus avium L.) linkage maps using microsatellite markers and SNPs detected by genotyping-by-sequencing (GBS). PLoS ONE 2015.

Abstract

Linkage maps are valuable tools in genetic and genomic studies. For sweet cherry, linkage maps have been constructed using mainly microsatellite markers (SSRs) and, recently, using single nucleotide polymorphism markers (SNPs) from a cherry 6K SNP array. Genotyping-by-sequencing (GBS), a new methodology based on high-throughput sequencing, holds great promise for identification of high number of SNPs and construction of high density linkage maps. In this study, GBS was used to identify SNPs from an intra-specific sweet cherry cross. A total of 8,476 high quality SNPs were selected for mapping. The physical position for each SNP was determined using the peach genome, Peach v1.0, as reference, and a homogeneous distribution of markers along the eight peach scaffolds was obtained. On average, 65.6% of the SNPs were present in genic regions and 49.8% were located in exonic regions. In addition to the SNPs, a group of SSRs was also used for construction of linkage maps. Parental and consensus high density maps were constructed by genotyping 166 siblings from a 'Rainier' x 'Rivedel' (Ra x Ri) cross. Using Ra x Ri population, 462, 489 and 985 markers were mapped into eight linkage groups in 'Rainier', 'Rivedel' and the Ra x Ri map, respectively, with 80% of mapped SNPs located in genic regions. Obtained maps spanned 549.5, 582.6 and 731.3 cM for 'Rainier', 'Rivedel' and consensus maps, respectively, with an average distance of 1.2 cM between adjacent markers for both 'Rainier' and 'Rivedel' maps and of 0.7 cM for Ra x Ri map. High synteny and co-linearity was observed between obtained maps and with Peach v1.0. These new high density linkage maps provide valuable information on the sweet cherry genome, and serve as the basis for identification of QTLs and genes relevant for the breeding of the species.
Features
This publication contains information about 8,477 features:
Feature NameUniquenameType
s1_46766264s1_46766264genetic_marker
s1_46782978s1_46782978genetic_marker
s1_46796011s1_46796011genetic_marker
s1_46796114s1_46796114genetic_marker
s1_46803850s1_46803850genetic_marker
s1_46803853s1_46803853genetic_marker
s1_46803877s1_46803877genetic_marker
s1_46803878s1_46803878genetic_marker
s1_46803892s1_46803892genetic_marker
s1_46803898s1_46803898genetic_marker
s1_46804044s1_46804044genetic_marker
s1_46804090s1_46804090genetic_marker
s1_46804950s1_46804950genetic_marker
s1_46804991s1_46804991genetic_marker
s1_46826337s1_46826337genetic_marker
s2_166103s2_166103genetic_marker
s2_178789s2_178789genetic_marker
s2_195134s2_195134genetic_marker
s2_310996s2_310996genetic_marker
s2_328225s2_328225genetic_marker
s2_328229s2_328229genetic_marker
s2_328247s2_328247genetic_marker
s2_328256s2_328256genetic_marker
s2_328446s2_328446genetic_marker
s2_328458s2_328458genetic_marker

Pages

Featuremaps
This publication contains information about 4 maps:
Map Name
Sweet Cherry-Ra-F1
Sweet Cherry-Ri-F1
Sweet Cherry-RaxRi-F1
Sweet_cherry_RaxRi_F1-physical-Prunus-persicaV1.0