Genome-wide SNP detection, validation, and development of an 8K SNP array for apple.

Publication Overview
TitleGenome-wide SNP detection, validation, and development of an 8K SNP array for apple
AuthorsChagné D, Crowhurst RN, Troggio M, Davey MW, Gilmore B, Lawley C, Vanderzande S, Hellens RP, Kumar S, Cestaro A, Velasco R, Main D, Rees JD, Iezzoni A, Mockler T, Wilhelm L, Van de Weg E, Gardiner SE, Bassil N, Peace C
TypeJournal Article
Journal NamePloS one
Volume7
Issue2
Year2012
Page(s)e31745
CitationChagné D, Crowhurst RN, Troggio M, Davey MW, Gilmore B, Lawley C, Vanderzande S, Hellens RP, Kumar S, Cestaro A, Velasco R, Main D, Rees JD, Iezzoni A, Mockler T, Wilhelm L, Van de Weg E, Gardiner SE, Bassil N, Peace C. Genome-wide SNP detection, validation, and development of an 8K SNP array for apple. PloS one. 2012; 7(2):e31745.

Abstract

As high-throughput genetic marker screening systems are essential for a range of genetics studies and plant breeding applications, the International RosBREED SNP Consortium (IRSC) has utilized the Illumina Infinium® II system to develop a medium- to high-throughput SNP screening tool for genome-wide evaluation of allelic variation in apple (Malus×domestica) breeding germplasm. For genome-wide SNP discovery, 27 apple cultivars were chosen to represent worldwide breeding germplasm and re-sequenced at low coverage with the Illumina Genome Analyzer II. Following alignment of these sequences to the whole genome sequence of 'Golden Delicious', SNPs were identified using SoapSNP. A total of 2,113,120 SNPs were detected, corresponding to one SNP to every 288 bp of the genome. The Illumina GoldenGate® assay was then used to validate a subset of 144 SNPs with a range of characteristics, using a set of 160 apple accessions. This validation assay enabled fine-tuning of the final subset of SNPs for the Illumina Infinium® II system. The set of stringent filtering criteria developed allowed choice of a set of SNPs that not only exhibited an even distribution across the apple genome and a range of minor allele frequencies to ensure utility across germplasm, but also were located in putative exonic regions to maximize genotyping success rate. A total of 7867 apple SNPs was established for the IRSC apple 8K SNP array v1, of which 5554 were polymorphic after evaluation in segregating families and a germplasm collection. This publicly available genomics resource will provide an unprecedented resolution of SNP haplotypes, which will enable marker-locus-trait association discovery, description of the genetic architecture of quantitative traits, investigation of genetic variation (neutral and functional), and genomic selection in apple.

Features
This publication contains information about 456 features:
Feature NameUniquenameType
RosBREEDSNP_SNP_CT_24109006_Lg4_00232_MAF40_218914_exon1RosBREEDSNP_SNP_CT_24109006_Lg4_00232_MAF40_218914_exon1genetic_marker
RosBREEDSNP_SNP_CT_2449342_Lg3_RosCOS1398_MAF20_MDP0000188698_exon9RosBREEDSNP_SNP_CT_2449342_Lg3_RosCOS1398_MAF20_MDP0000188698_exon9genetic_marker
RosBREEDSNP_SNP_CT_24804248_Lg17_00341_MAF40_1654737_exon1RosBREEDSNP_SNP_CT_24804248_Lg17_00341_MAF40_1654737_exon1genetic_marker
RosBREEDSNP_SNP_CT_24821574_Lg2_00833_MAF40_MDP0000316384_exon1RosBREEDSNP_SNP_CT_24821574_Lg2_00833_MAF40_MDP0000316384_exon1genetic_marker
RosBREEDSNP_SNP_CT_24875254_Lg14_02673_MAF20_381433_exon1RosBREEDSNP_SNP_CT_24875254_Lg14_02673_MAF20_381433_exon1genetic_marker
RosBREEDSNP_SNP_CT_25284565_Lg17_MDP0000194307_MAF20_MDP0000194307_exon13RosBREEDSNP_SNP_CT_25284565_Lg17_MDP0000194307_MAF20_MDP0000194307_exon13genetic_marker
RosBREEDSNP_SNP_CT_25808285_Lg12_150888_MAF20_150888_exon2RosBREEDSNP_SNP_CT_25808285_Lg12_150888_MAF20_150888_exon2genetic_marker
RosBREEDSNP_SNP_CT_2607533_Lg2_226032_MAF30_226032_exon1RosBREEDSNP_SNP_CT_2607533_Lg2_226032_MAF30_226032_exon1genetic_marker
RosBREEDSNP_SNP_CT_26810795_Lg11_01361_MAF20_MDP0000180811_exon3RosBREEDSNP_SNP_CT_26810795_Lg11_01361_MAF20_MDP0000180811_exon3genetic_marker
RosBREEDSNP_SNP_CT_26877863_Lg5_02729_MAF40_MDP0000273487_exon4RosBREEDSNP_SNP_CT_26877863_Lg5_02729_MAF40_MDP0000273487_exon4genetic_marker
RosBREEDSNP_SNP_CT_28131963_Lg10_68102_MAF10_68102_exon1RosBREEDSNP_SNP_CT_28131963_Lg10_68102_MAF10_68102_exon1genetic_marker
RosBREEDSNP_SNP_CT_28294955_Lg8_00636_MAF20_MDP0000191112_exon1RosBREEDSNP_SNP_CT_28294955_Lg8_00636_MAF20_MDP0000191112_exon1genetic_marker
RosBREEDSNP_SNP_CT_29063582_Lg12_00334_MAF40_1650968_exon1RosBREEDSNP_SNP_CT_29063582_Lg12_00334_MAF40_1650968_exon1genetic_marker
RosBREEDSNP_SNP_CT_29778441_Lg9_00467_MAF40_MDP0000245153_exon5RosBREEDSNP_SNP_CT_29778441_Lg9_00467_MAF40_MDP0000245153_exon5genetic_marker
RosBREEDSNP_SNP_CT_30102301_Lg6_02138_MAF10_497873_exon5RosBREEDSNP_SNP_CT_30102301_Lg6_02138_MAF10_497873_exon5genetic_marker
RosBREEDSNP_SNP_CT_3046222_Lg15_01814_MAF20_480291_exon1RosBREEDSNP_SNP_CT_3046222_Lg15_01814_MAF20_480291_exon1genetic_marker
RosBREEDSNP_SNP_CT_31055500_Lg12_00915_MAF40_MDP0000318760_exon1RosBREEDSNP_SNP_CT_31055500_Lg12_00915_MAF40_MDP0000318760_exon1genetic_marker
RosBREEDSNP_SNP_CT_31711065_Lg9_00206_MAF10_1668249_exon4RosBREEDSNP_SNP_CT_31711065_Lg9_00206_MAF10_1668249_exon4genetic_marker
RosBREEDSNP_SNP_CT_32726730_Lg12_00840_MAF30_1647209_exon1RosBREEDSNP_SNP_CT_32726730_Lg12_00840_MAF30_1647209_exon1genetic_marker
RosBREEDSNP_SNP_CT_32974291_Lg2_02223_MAF30_283352_exon1RosBREEDSNP_SNP_CT_32974291_Lg2_02223_MAF30_283352_exon1genetic_marker
RosBREEDSNP_SNP_CT_34455017_Lg3_02030_MAF10_453850_exon2RosBREEDSNP_SNP_CT_34455017_Lg3_02030_MAF10_453850_exon2genetic_marker
RosBREEDSNP_SNP_CT_35398250_Lg12_01793_MAF20_1632370_exon1RosBREEDSNP_SNP_CT_35398250_Lg12_01793_MAF20_1632370_exon1genetic_marker
RosBREEDSNP_SNP_CT_3771454_Lg9_00605_MAF20_303099_exon1RosBREEDSNP_SNP_CT_3771454_Lg9_00605_MAF20_303099_exon1genetic_marker
RosBREEDSNP_SNP_CT_38037125_Lg2_10007_MAF40_485227_exon1RosBREEDSNP_SNP_CT_38037125_Lg2_10007_MAF40_485227_exon1genetic_marker
RosBREEDSNP_SNP_CT_4326366_Lg2_01945_MAF50_1633451_exon1RosBREEDSNP_SNP_CT_4326366_Lg2_01945_MAF50_1633451_exon1genetic_marker

Pages