Development and validation of the Axiom(®) Apple480K SNP genotyping array

Publication Overview
TitleDevelopment and validation of the Axiom(®) Apple480K SNP genotyping array
AuthorsBianco L, Cestaro A, Linsmith G, Muranty H, Denance C, Théron A, Poncet C, Micheletti D, Kerschbamer E, Di Pierro EA, Larger S, Pindo M, van de Weg E, Davassi A, Laurens F, Velasco R, Durel CE, Troggio M
TypeJournal Article
Journal NameThe Plant journal : for cell and molecular biology
Year2016
CitationBianco L, Cestaro A, Linsmith G, Muranty H, Denance C, Théron A, Poncet C, Micheletti D, Kerschbamer E, Di Pierro EA, Larger S, Pindo M, van de Weg E, Davassi A, Laurens F, Velasco R, Durel CE, Troggio M. Development and validation of the Axiom(®) Apple480K SNP genotyping array. The Plant journal : for cell and molecular biology. 2016 Feb 26.

Abstract

Cultivated apple (Malus x domestica Borkh.) is one of the most important fruit crops in temperate regions, with great economic and cultural values. The apple genome is highly heterozygous and has undergone a recent duplication which, combined with a rapid LD decay, makes it difficult to perform genome-wide association (GWA) studies. Single nucleotide polymorphism arrays offer highly multiplexed assays at a relatively low cost per data point and can be a valid tool for the identification of the markers associated with traits of interest. Here, we describe the development and validation of a 487K SNP Affymetrix Axiom(®) genotyping array for apple and discuss its potential applications. The array has been built from the high-depth resequencing of 63 different cultivars covering most of the genetic diversity in cultivated apple. SNPs have been chosen by applying a focal points approach to enrich genic regions, but also to reach a uniform coverage of non-genic regions. A total of 1,324 apple accessions, including the 92 progenies of two mapping populations, have been genotyped with the Axiom(®) Apple480K to assess the effectiveness of the array. A large majority of SNPs (359,994; 74%) fell in the stringent class of Poly High Resolution polymorphisms. We also devised a filtering procedure to identify a subset of 275K very robust markers that can be safely used for germplasm surveys in apple. The Axiom(®) Apple480K has now been commercially released both for public and proprietary use and will likely be a reference tool for GWA studies in apple. This article is protected by copyright. All rights reserved.

Features
This publication contains information about 487,249 features:
Feature NameUniquenameType
RosBREEDSNP_SNP_CT_1323911_Lg8_00487_MAF40_1687140_exon1RosBREEDSNP_SNP_CT_1323911_Lg8_00487_MAF40_1687140_exon1genetic_marker
RosBREEDSNP_SNP_CT_13348603_Lg4_RosCOS3641_MAF50_MDP0000768370_exon1RosBREEDSNP_SNP_CT_13348603_Lg4_RosCOS3641_MAF50_MDP0000768370_exon1genetic_marker
RosBREEDSNP_SNP_CT_13646169_Lg2_00214_MAF50_1635069_exon1RosBREEDSNP_SNP_CT_13646169_Lg2_00214_MAF50_1635069_exon1genetic_marker
RosBREEDSNP_SNP_CT_14524819_Lg2_00002_MAF20_493559_exon1RosBREEDSNP_SNP_CT_14524819_Lg2_00002_MAF20_493559_exon1genetic_marker
RosBREEDSNP_SNP_CT_14581355_Lg2_00987_MAF50_517545_exon1RosBREEDSNP_SNP_CT_14581355_Lg2_00987_MAF50_517545_exon1genetic_marker
RosBREEDSNP_SNP_CT_1540624_Lg16_LAR1_MAF40_1618769_exon2RosBREEDSNP_SNP_CT_1540624_Lg16_LAR1_MAF40_1618769_exon2genetic_marker
RosBREEDSNP_SNP_CT_17043353_Lg10_02009_MAF30_1651924_exon5RosBREEDSNP_SNP_CT_17043353_Lg10_02009_MAF30_1651924_exon5genetic_marker
RosBREEDSNP_SNP_CT_17245435_Lg1_RosCOS3372_MAF10_1674115_exon1RosBREEDSNP_SNP_CT_17245435_Lg1_RosCOS3372_MAF10_1674115_exon1genetic_marker
RosBREEDSNP_SNP_CT_17368072_Lg12_01607_MAF40_1628848_exon1RosBREEDSNP_SNP_CT_17368072_Lg12_01607_MAF40_1628848_exon1genetic_marker
RosBREEDSNP_SNP_CT_18004558_Lg2_72623_MAF40_72623_exon1RosBREEDSNP_SNP_CT_18004558_Lg2_72623_MAF40_72623_exon1genetic_marker
RosBREEDSNP_SNP_CT_18272664_Lg9_00109_MAF40_515039_exon1RosBREEDSNP_SNP_CT_18272664_Lg9_00109_MAF40_515039_exon1genetic_marker
RosBREEDSNP_SNP_CT_18399291_Lg3_02690_MAF20_MDP0000659822_exon1RosBREEDSNP_SNP_CT_18399291_Lg3_02690_MAF20_MDP0000659822_exon1genetic_marker
RosBREEDSNP_SNP_CT_18794918_Lg1_02731_MAF30_1632516_exon5RosBREEDSNP_SNP_CT_18794918_Lg1_02731_MAF30_1632516_exon5genetic_marker
RosBREEDSNP_SNP_CT_18837099_Lg2_02651_MAF30_426760_exon2RosBREEDSNP_SNP_CT_18837099_Lg2_02651_MAF30_426760_exon2genetic_marker
RosBREEDSNP_SNP_CT_1948548_Lg3_RosCOS1698_MAF50_356611_exon4RosBREEDSNP_SNP_CT_1948548_Lg3_RosCOS1698_MAF50_356611_exon4genetic_marker
RosBREEDSNP_SNP_CT_20367259_Lg15_02080_MAF10_746443_exon1RosBREEDSNP_SNP_CT_20367259_Lg15_02080_MAF10_746443_exon1genetic_marker
RosBREEDSNP_SNP_CT_21134048_Lg6_248164_MAF10_248164_exon2RosBREEDSNP_SNP_CT_21134048_Lg6_248164_MAF10_248164_exon2genetic_marker
RosBREEDSNP_SNP_CT_21150813_Lg4_01236_MAF10_1650238_exon2RosBREEDSNP_SNP_CT_21150813_Lg4_01236_MAF10_1650238_exon2genetic_marker
RosBREEDSNP_SNP_CT_2130966_Lg14_01846_MAF10_1638997_exon2RosBREEDSNP_SNP_CT_2130966_Lg14_01846_MAF10_1638997_exon2genetic_marker
RosBREEDSNP_SNP_CT_21688178_Lg13_02069_MAF20_MDP0000685651_exon2RosBREEDSNP_SNP_CT_21688178_Lg13_02069_MAF20_MDP0000685651_exon2genetic_marker
RosBREEDSNP_SNP_CT_21774157_Lg4_00160_MAF10_621458_exon1RosBREEDSNP_SNP_CT_21774157_Lg4_00160_MAF10_621458_exon1genetic_marker
RosBREEDSNP_SNP_CT_22279636_Lg6_02165_MAF30_MDP0000777702_exon2RosBREEDSNP_SNP_CT_22279636_Lg6_02165_MAF30_MDP0000777702_exon2genetic_marker
RosBREEDSNP_SNP_CT_23446212_Lg14_00062_MAF30_1685833_exon2RosBREEDSNP_SNP_CT_23446212_Lg14_00062_MAF30_1685833_exon2genetic_marker
RosBREEDSNP_SNP_CT_23462644_Lg6_01502_MAF20_99517_exon1RosBREEDSNP_SNP_CT_23462644_Lg6_01502_MAF20_99517_exon1genetic_marker
RosBREEDSNP_SNP_CT_2397172_Lg2_01565_MAF20_538704_exon1RosBREEDSNP_SNP_CT_2397172_Lg2_01565_MAF20_538704_exon1genetic_marker

Pages