Development and validation of the Axiom(®) Apple480K SNP genotyping array

Publication Overview
TitleDevelopment and validation of the Axiom(®) Apple480K SNP genotyping array
AuthorsBianco L, Cestaro A, Linsmith G, Muranty H, Denance C, Théron A, Poncet C, Micheletti D, Kerschbamer E, Di Pierro EA, Larger S, Pindo M, van de Weg E, Davassi A, Laurens F, Velasco R, Durel CE, Troggio M
TypeJournal Article
Journal NameThe Plant journal : for cell and molecular biology
Year2016
CitationBianco L, Cestaro A, Linsmith G, Muranty H, Denance C, Théron A, Poncet C, Micheletti D, Kerschbamer E, Di Pierro EA, Larger S, Pindo M, van de Weg E, Davassi A, Laurens F, Velasco R, Durel CE, Troggio M. Development and validation of the Axiom(®) Apple480K SNP genotyping array. The Plant journal : for cell and molecular biology. 2016 Feb 26.

Abstract

Cultivated apple (Malus x domestica Borkh.) is one of the most important fruit crops in temperate regions, with great economic and cultural values. The apple genome is highly heterozygous and has undergone a recent duplication which, combined with a rapid LD decay, makes it difficult to perform genome-wide association (GWA) studies. Single nucleotide polymorphism arrays offer highly multiplexed assays at a relatively low cost per data point and can be a valid tool for the identification of the markers associated with traits of interest. Here, we describe the development and validation of a 487K SNP Affymetrix Axiom(®) genotyping array for apple and discuss its potential applications. The array has been built from the high-depth resequencing of 63 different cultivars covering most of the genetic diversity in cultivated apple. SNPs have been chosen by applying a focal points approach to enrich genic regions, but also to reach a uniform coverage of non-genic regions. A total of 1,324 apple accessions, including the 92 progenies of two mapping populations, have been genotyped with the Axiom(®) Apple480K to assess the effectiveness of the array. A large majority of SNPs (359,994; 74%) fell in the stringent class of Poly High Resolution polymorphisms. We also devised a filtering procedure to identify a subset of 275K very robust markers that can be safely used for germplasm surveys in apple. The Axiom(®) Apple480K has now been commercially released both for public and proprietary use and will likely be a reference tool for GWA studies in apple. This article is protected by copyright. All rights reserved.

Features
This publication contains information about 487,249 features:
Feature NameUniquenameType
RosBREEDSNP_SNP_CA_12059188_Lg17_00682_MAF10_MDP0000137984_exon6RosBREEDSNP_SNP_CA_12059188_Lg17_00682_MAF10_MDP0000137984_exon6genetic_marker
RosBREEDSNP_SNP_CA_12364910_Lg16_01244_MAF50_MDP0000316202_exon4RosBREEDSNP_SNP_CA_12364910_Lg16_01244_MAF50_MDP0000316202_exon4genetic_marker
RosBREEDSNP_SNP_CA_12886110_Lg9_00331_MAF10_505681_exon2RosBREEDSNP_SNP_CA_12886110_Lg9_00331_MAF10_505681_exon2genetic_marker
RosBREEDSNP_SNP_CA_13680239_Lg5_00978_MAF50_MDP0000255099_exon2RosBREEDSNP_SNP_CA_13680239_Lg5_00978_MAF50_MDP0000255099_exon2genetic_marker
RosBREEDSNP_SNP_CA_13921344_Lg2_248148__248148_exon1RosBREEDSNP_SNP_CA_13921344_Lg2_248148__248148_exon1genetic_marker
RosBREEDSNP_SNP_CA_16037281_Lg14_20974__20974_exon1RosBREEDSNP_SNP_CA_16037281_Lg14_20974__20974_exon1genetic_marker
RosBREEDSNP_SNP_CA_18520824_Lg9_328022_MAF40_328022_exon1RosBREEDSNP_SNP_CA_18520824_Lg9_328022_MAF40_328022_exon1genetic_marker
RosBREEDSNP_SNP_CA_2050220_Lg9_01573_MAF10_MDP0000197725_exon1RosBREEDSNP_SNP_CA_2050220_Lg9_01573_MAF10_MDP0000197725_exon1genetic_marker
RosBREEDSNP_SNP_CA_24006092_Lg12_01798_MAF20_1646274_exon1RosBREEDSNP_SNP_CA_24006092_Lg12_01798_MAF20_1646274_exon1genetic_marker
RosBREEDSNP_SNP_CA_27155494_Lg12_00883_MAF20_1680192_exon2RosBREEDSNP_SNP_CA_27155494_Lg12_00883_MAF20_1680192_exon2genetic_marker
RosBREEDSNP_SNP_CA_3576447_Lg15_01047_MAF20_302566_exon1RosBREEDSNP_SNP_CA_3576447_Lg15_01047_MAF20_302566_exon1genetic_marker
RosBREEDSNP_SNP_CA_36780856_Lg3_RosCOS3591_MAF50_1686094_exon2RosBREEDSNP_SNP_CA_36780856_Lg3_RosCOS3591_MAF50_1686094_exon2genetic_marker
RosBREEDSNP_SNP_CA_37052690_Lg10_00604_MAF30_1671079_exon3RosBREEDSNP_SNP_CA_37052690_Lg10_00604_MAF30_1671079_exon3genetic_marker
RosBREEDSNP_SNP_CA_3783110_Lg9_00605_MAF10_1663341_exon1RosBREEDSNP_SNP_CA_3783110_Lg9_00605_MAF10_1663341_exon1genetic_marker
RosBREEDSNP_SNP_CA_40085225_Lg2_02535_MAF40_MDP0000320988_exon20RosBREEDSNP_SNP_CA_40085225_Lg2_02535_MAF40_MDP0000320988_exon20genetic_marker
RosBREEDSNP_SNP_CA_4435852_Lg9_RosCOS1285_MAF30_470258_exon1RosBREEDSNP_SNP_CA_4435852_Lg9_RosCOS1285_MAF30_470258_exon1genetic_marker
RosBREEDSNP_SNP_CA_5027432_Lg11_RosCOS2981_MAF10_1650867_exon2RosBREEDSNP_SNP_CA_5027432_Lg11_RosCOS2981_MAF10_1650867_exon2genetic_marker
RosBREEDSNP_SNP_CA_5411076_Lg12_02212_MAF10_MDP0000766605_exon1RosBREEDSNP_SNP_CA_5411076_Lg12_02212_MAF10_MDP0000766605_exon1genetic_marker
RosBREEDSNP_SNP_CA_5944490_Lg15_CXE2_MAF50_226553_exon1RosBREEDSNP_SNP_CA_5944490_Lg15_CXE2_MAF50_226553_exon1genetic_marker
RosBREEDSNP_SNP_CA_6135950_Lg14_02706_MAF30_MDP0000320229_exon1RosBREEDSNP_SNP_CA_6135950_Lg14_02706_MAF30_MDP0000320229_exon1genetic_marker
RosBREEDSNP_SNP_CA_7244943_Lg2_00505_MAF40_1671066_exon1RosBREEDSNP_SNP_CA_7244943_Lg2_00505_MAF40_1671066_exon1genetic_marker
RosBREEDSNP_SNP_CA_7606033_Lg13_02124_MAF20_1677651_exon1RosBREEDSNP_SNP_CA_7606033_Lg13_02124_MAF20_1677651_exon1genetic_marker
RosBREEDSNP_SNP_CT_11956032_Lg17_01800_MAF20_413520_exon1RosBREEDSNP_SNP_CT_11956032_Lg17_01800_MAF20_413520_exon1genetic_marker
RosBREEDSNP_SNP_CT_12934511_Lg11_02465_MAF40_1664199_exon1RosBREEDSNP_SNP_CT_12934511_Lg11_02465_MAF40_1664199_exon1genetic_marker
RosBREEDSNP_SNP_CT_12943589_Lg17_151039_MAF10_151039_exon1RosBREEDSNP_SNP_CT_12943589_Lg17_151039_MAF10_151039_exon1genetic_marker

Pages