Development and validation of the Axiom(®) Apple480K SNP genotyping array

Publication Overview
TitleDevelopment and validation of the Axiom(®) Apple480K SNP genotyping array
AuthorsBianco L, Cestaro A, Linsmith G, Muranty H, Denance C, Théron A, Poncet C, Micheletti D, Kerschbamer E, Di Pierro EA, Larger S, Pindo M, van de Weg E, Davassi A, Laurens F, Velasco R, Durel CE, Troggio M
TypeJournal Article
Journal NameThe Plant journal : for cell and molecular biology
Year2016
CitationBianco L, Cestaro A, Linsmith G, Muranty H, Denance C, Théron A, Poncet C, Micheletti D, Kerschbamer E, Di Pierro EA, Larger S, Pindo M, van de Weg E, Davassi A, Laurens F, Velasco R, Durel CE, Troggio M. Development and validation of the Axiom(®) Apple480K SNP genotyping array. The Plant journal : for cell and molecular biology. 2016 Feb 26.

Abstract

Cultivated apple (Malus x domestica Borkh.) is one of the most important fruit crops in temperate regions, with great economic and cultural values. The apple genome is highly heterozygous and has undergone a recent duplication which, combined with a rapid LD decay, makes it difficult to perform genome-wide association (GWA) studies. Single nucleotide polymorphism arrays offer highly multiplexed assays at a relatively low cost per data point and can be a valid tool for the identification of the markers associated with traits of interest. Here, we describe the development and validation of a 487K SNP Affymetrix Axiom(®) genotyping array for apple and discuss its potential applications. The array has been built from the high-depth resequencing of 63 different cultivars covering most of the genetic diversity in cultivated apple. SNPs have been chosen by applying a focal points approach to enrich genic regions, but also to reach a uniform coverage of non-genic regions. A total of 1,324 apple accessions, including the 92 progenies of two mapping populations, have been genotyped with the Axiom(®) Apple480K to assess the effectiveness of the array. A large majority of SNPs (359,994; 74%) fell in the stringent class of Poly High Resolution polymorphisms. We also devised a filtering procedure to identify a subset of 275K very robust markers that can be safely used for germplasm surveys in apple. The Axiom(®) Apple480K has now been commercially released both for public and proprietary use and will likely be a reference tool for GWA studies in apple. This article is protected by copyright. All rights reserved.

Features
This publication contains information about 487,249 features:
Feature NameUniquenameType
RosBREEDSNP_SNP_CT_8516804_Lg3_RosCOS3572_MAF30_324882_exon1RosBREEDSNP_SNP_CT_8516804_Lg3_RosCOS3572_MAF30_324882_exon1genetic_marker
RosBREEDSNP_SNP_CT_8557916_Lg10_00260_MAF50_1627495_exon2RosBREEDSNP_SNP_CT_8557916_Lg10_00260_MAF50_1627495_exon2genetic_marker
RosBREEDSNP_SNP_CT_8844305_Lg17_01842_MAF20_MDP0000445291_exon1RosBREEDSNP_SNP_CT_8844305_Lg17_01842_MAF20_MDP0000445291_exon1genetic_marker
RosBREEDSNP_SNP_CT_8933286_Lg8_01625_MAF30_1653734_exon1RosBREEDSNP_SNP_CT_8933286_Lg8_01625_MAF30_1653734_exon1genetic_marker
RosBREEDSNP_SNP_CT_9480406_Lg10_00875_MAF30_268401_exon1RosBREEDSNP_SNP_CT_9480406_Lg10_00875_MAF30_268401_exon1genetic_marker
RosBREEDSNP_SNP_CT_981417_Lg5_01694_MAF50_1679637_exon2RosBREEDSNP_SNP_CT_981417_Lg5_01694_MAF50_1679637_exon2genetic_marker
RosBREEDSNP_SNP_CT_982733_Lg3_00506_MAF30_MDP0000198677_exon1RosBREEDSNP_SNP_CT_982733_Lg3_00506_MAF30_MDP0000198677_exon1genetic_marker
RosBREEDSNP_SNP_CT_9984447_Lg16_00879_MAF20_1622157_exon2RosBREEDSNP_SNP_CT_9984447_Lg16_00879_MAF20_1622157_exon2genetic_marker
RosBREEDSNP_SNP_GA_1110740_Lg15_01009_MAF20_634492_exon1RosBREEDSNP_SNP_GA_1110740_Lg15_01009_MAF20_634492_exon1genetic_marker
RosBREEDSNP_SNP_GA_11499061_Lg1_01815_MAF30_516837_exon4RosBREEDSNP_SNP_GA_11499061_Lg1_01815_MAF30_516837_exon4genetic_marker
RosBREEDSNP_SNP_GA_11542218_Lg2_01005_MAF20_MDP0000234905_exon2RosBREEDSNP_SNP_GA_11542218_Lg2_01005_MAF20_MDP0000234905_exon2genetic_marker
RosBREEDSNP_SNP_GA_11758165_Lg2_00614_MAF40_MDP0000894511_exon1RosBREEDSNP_SNP_GA_11758165_Lg2_00614_MAF40_MDP0000894511_exon1genetic_marker
RosBREEDSNP_SNP_GA_11950668_Lg2_RosCOS2709_MAF40_1639624_exon2RosBREEDSNP_SNP_GA_11950668_Lg2_RosCOS2709_MAF40_1639624_exon2genetic_marker
RosBREEDSNP_SNP_GA_11965366_Lg2_RosCOS2709_MAF20_MDP0000266475_exon2RosBREEDSNP_SNP_GA_11965366_Lg2_RosCOS2709_MAF20_MDP0000266475_exon2genetic_marker
RosBREEDSNP_SNP_GA_12053580_Lg10_RosCOS2353_MAF20_1671141_exon4RosBREEDSNP_SNP_GA_12053580_Lg10_RosCOS2353_MAF20_1671141_exon4genetic_marker
RosBREEDSNP_SNP_GA_12451235_Lg10_00176_MAF20_1637244_exon4RosBREEDSNP_SNP_GA_12451235_Lg10_00176_MAF20_1637244_exon4genetic_marker
RosBREEDSNP_SNP_GA_1260672_Lg2_01134_MAF40_1677893_exon1RosBREEDSNP_SNP_GA_1260672_Lg2_01134_MAF40_1677893_exon1genetic_marker
RosBREEDSNP_SNP_GA_12621135_Lg17_01904_MAF30_MDP0000287687_exon2RosBREEDSNP_SNP_GA_12621135_Lg17_01904_MAF30_MDP0000287687_exon2genetic_marker
RosBREEDSNP_SNP_GA_1304151_Lg17_00864_MAF20_1656410_exon4RosBREEDSNP_SNP_GA_1304151_Lg17_00864_MAF20_1656410_exon4genetic_marker
RosBREEDSNP_SNP_GA_1316702_Lg8_00487_MAF30_MDP0000392194_exon1RosBREEDSNP_SNP_GA_1316702_Lg8_00487_MAF30_MDP0000392194_exon1genetic_marker
RosBREEDSNP_SNP_GA_13618_Lg17_00091_MAF30_MDP0000791232_exon8RosBREEDSNP_SNP_GA_13618_Lg17_00091_MAF30_MDP0000791232_exon8genetic_marker
RosBREEDSNP_SNP_GA_14457107_Lg3_01124_MAF40_MDP0000155390_exon1RosBREEDSNP_SNP_GA_14457107_Lg3_01124_MAF40_MDP0000155390_exon1genetic_marker
RosBREEDSNP_SNP_GA_1451232_Lg15_MDP0000227096__MDP0000227096_exon6RosBREEDSNP_SNP_GA_1451232_Lg15_MDP0000227096__MDP0000227096_exon6genetic_marker
RosBREEDSNP_SNP_GA_14520985_Lg5_151123__151123_exon1RosBREEDSNP_SNP_GA_14520985_Lg5_151123__151123_exon1genetic_marker
RosBREEDSNP_SNP_GA_14673668_Lg10_01267_MAF10_10639_exon1RosBREEDSNP_SNP_GA_14673668_Lg10_01267_MAF10_10639_exon1genetic_marker

Pages